001025196 001__ 1025196
001025196 005__ 20250203103226.0
001025196 0247_ $$2doi$$a10.1002/cssc.202201912
001025196 0247_ $$2ISSN$$a1864-5631
001025196 0247_ $$2ISSN$$a1864-564X
001025196 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02764
001025196 0247_ $$2pmid$$a36594440
001025196 0247_ $$2WOS$$aWOS:000920048300001
001025196 037__ $$aFZJ-2024-02764
001025196 082__ $$a540
001025196 1001_ $$avon Holtum, Bastian$$b0
001025196 245__ $$aAccessing the Primary Solid–Electrolyte Interphase on Lithium Metal: A Method for Low‐Concentration Compound Analysis
001025196 260__ $$aWeinheim$$bWiley-VCH$$c2023
001025196 3367_ $$2DRIVER$$aarticle
001025196 3367_ $$2DataCite$$aOutput Types/Journal article
001025196 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714722761_30347
001025196 3367_ $$2BibTeX$$aARTICLE
001025196 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025196 3367_ $$00$$2EndNote$$aJournal Article
001025196 520__ $$aDespite large research efforts in the fields of lithium ion and lithium metal batteries, there are still unanswered questions. One of them is the formation of the solid−electrolyte interphase (SEI) in lithium-metal-anode-based battery systems. Until now, a compound profile analysis of the SEI on lithium metal was challenging as the amounts of many compounds after simple contact of lithium metal and the electrolyte were too low for detection with analytical methods. This study presents a novel approach on unravelling the SEI compound profile through accumulation in the gas, liquid electrolyte, and solid phase. The method uses the intrinsic behavior of lithium metal to spontaneously react with the liquid electrolyte. In combination with complementary, state-of-the-art analytical instrumentation and methods, this approach provides qualitative and quantitative results on all three phases revealing the vast variety of compounds formed in carbonate-based electrolytes.
001025196 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025196 536__ $$0G:(BMBF)13XP0225C$$aLillint - Thermodynamic and kinetic stability of the Lithium-Liquid Electrolyte Interface (13XP0225C)$$c13XP0225C$$x1
001025196 588__ $$aDataset connected to DataCite
001025196 7001_ $$aKubot, Maximilian$$b1
001025196 7001_ $$aPeschel, Christoph$$b2
001025196 7001_ $$aRodehorst, Uta$$b3
001025196 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
001025196 7001_ $$00000-0003-1508-6073$$aNowak, Sascha$$b5
001025196 7001_ $$00000-0001-8608-4521$$aWiemers-Meyer, Simon$$b6$$eCorresponding author
001025196 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202201912$$gVol. 16, no. 9, p. e202201912$$n9$$pe202201912$$tChemSusChem$$v16$$x1864-5631$$y2023
001025196 8564_ $$uhttps://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.pdf$$yOpenAccess
001025196 8564_ $$uhttps://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.gif?subformat=icon$$xicon$$yOpenAccess
001025196 8564_ $$uhttps://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025196 8564_ $$uhttps://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025196 8564_ $$uhttps://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025196 909CO $$ooai:juser.fz-juelich.de:1025196$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001025196 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025196 9141_ $$y2024
001025196 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001025196 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025196 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2022$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001025196 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025196 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2022$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001025196 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001025196 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025196 9801_ $$aFullTexts
001025196 980__ $$ajournal
001025196 980__ $$aVDB
001025196 980__ $$aUNRESTRICTED
001025196 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025196 981__ $$aI:(DE-Juel1)IMD-4-20141217