001     1025196
005     20250203103226.0
024 7 _ |a 10.1002/cssc.202201912
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02764
|2 datacite_doi
024 7 _ |a 36594440
|2 pmid
024 7 _ |a WOS:000920048300001
|2 WOS
037 _ _ |a FZJ-2024-02764
082 _ _ |a 540
100 1 _ |a von Holtum, Bastian
|b 0
245 _ _ |a Accessing the Primary Solid–Electrolyte Interphase on Lithium Metal: A Method for Low‐Concentration Compound Analysis
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714722761_30347
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite large research efforts in the fields of lithium ion and lithium metal batteries, there are still unanswered questions. One of them is the formation of the solid−electrolyte interphase (SEI) in lithium-metal-anode-based battery systems. Until now, a compound profile analysis of the SEI on lithium metal was challenging as the amounts of many compounds after simple contact of lithium metal and the electrolyte were too low for detection with analytical methods. This study presents a novel approach on unravelling the SEI compound profile through accumulation in the gas, liquid electrolyte, and solid phase. The method uses the intrinsic behavior of lithium metal to spontaneously react with the liquid electrolyte. In combination with complementary, state-of-the-art analytical instrumentation and methods, this approach provides qualitative and quantitative results on all three phases revealing the vast variety of compounds formed in carbonate-based electrolytes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a Lillint - Thermodynamic and kinetic stability of the Lithium-Liquid Electrolyte Interface (13XP0225C)
|0 G:(BMBF)13XP0225C
|c 13XP0225C
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Kubot, Maximilian
|b 1
700 1 _ |a Peschel, Christoph
|b 2
700 1 _ |a Rodehorst, Uta
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
700 1 _ |a Nowak, Sascha
|0 0000-0003-1508-6073
|b 5
700 1 _ |a Wiemers-Meyer, Simon
|0 0000-0001-8608-4521
|b 6
|e Corresponding author
773 _ _ |a 10.1002/cssc.202201912
|g Vol. 16, no. 9, p. e202201912
|0 PERI:(DE-600)2411405-4
|n 9
|p e202201912
|t ChemSusChem
|v 16
|y 2023
|x 1864-5631
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025196/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025196
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21