Hauptseite > Publikationsdatenbank > Effective SEI Formation via Phosphazene‐Based Electrolyte Additives for Stabilizing Silicon‐Based Lithium‐Ion Batteries > print |
001 | 1025198 | ||
005 | 20250203103226.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202203503 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02766 |2 datacite_doi |
024 | 7 | _ | |a WOS:000907399900001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02766 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Ghaur, Adjmal |b 0 |
245 | _ | _ | |a Effective SEI Formation via Phosphazene‐Based Electrolyte Additives for Stabilizing Silicon‐Based Lithium‐Ion Batteries |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714574650_3947 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Unterstützt durch Projekt: GrEEn” (313-W044A) |
520 | _ | _ | |a Silicon, as potential next-generation anode material for high-energy lithium-ion batteries (LIBs), suffers from substantial volume changes during (dis)charging, resulting in continuous breakage and (re-)formation of the solid electrolyte interphase (SEI), as well as from consumption of electrolyte and active lithium, which negatively impacts long-term performance and prevents silicon-rich anodes from practical application. In this work, fluorinated phosphazene compounds are investigated as electrolyte additives concerning their SEI-forming ability for boosting the performance of silicon oxide (SiOx)-based LIB cells. In detail, the electrochemical performance of NCM523 || SiOx/C pouch cells is studied, in combination with analyses regarding gas evolution properties, post-mortem morphological changes of the anode electrode and the SEI, as well as possible electrolyte degradation. Introducing the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between fluoroethylene carbonate and hexafluorocyclotriphosphazene-derivatives (HFPN), as well as enhanced electrochemical performance. The formation of a more effective SEI and increased electrolyte stabilization improves lifetime and results in an overall lower cell impedance. Furthermore, gas chromatography-mass spectrometry measurements of the aged electrolyte with HFPN-derivatives as an additive compound show suppressed ethylene carbonate and ethyl methyl carbonate decomposition, as well as reduced trans-esterification and oligomerization products in the aged electrolyte. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a SeNSE - Lithium-ion battery with silicon anode, nickel-rich cathode and in-cell sensor for electric vehicles (875548) |0 G:(EU-Grant)875548 |c 875548 |f H2020-LC-BAT-2019 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Peschel, Christoph |b 1 |
700 | 1 | _ | |a Dienwiebel, Iris |b 2 |
700 | 1 | _ | |a Haneke, Lukas |b 3 |
700 | 1 | _ | |a Du, Leilei |b 4 |
700 | 1 | _ | |a Profanter, Laurin |b 5 |
700 | 1 | _ | |a Gomez-Martin, Aurora |0 0000-0001-7053-3986 |b 6 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 7 |
700 | 1 | _ | |a Nowak, Sascha |0 0000-0003-1508-6073 |b 8 |
700 | 1 | _ | |a Placke, Tobias |0 0000-0002-2097-5193 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202203503 |g Vol. 13, no. 26, p. 2203503 |0 PERI:(DE-600)2594556-7 |n 26 |p 2203503 |t Advanced energy materials |v 13 |y 2023 |x 1614-6832 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025198/files/Advanced%20Energy%20Materials%20-%202023%20-%20Ghaur%20-%20Effective%20SEI%20Formation%20via%20Phosphazene%E2%80%90Based%20Electrolyte%20Additives%20for.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025198/files/Advanced%20Energy%20Materials%20-%202023%20-%20Ghaur%20-%20Effective%20SEI%20Formation%20via%20Phosphazene%E2%80%90Based%20Electrolyte%20Additives%20for.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025198/files/Advanced%20Energy%20Materials%20-%202023%20-%20Ghaur%20-%20Effective%20SEI%20Formation%20via%20Phosphazene%E2%80%90Based%20Electrolyte%20Additives%20for.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025198/files/Advanced%20Energy%20Materials%20-%202023%20-%20Ghaur%20-%20Effective%20SEI%20Formation%20via%20Phosphazene%E2%80%90Based%20Electrolyte%20Additives%20for.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025198/files/Advanced%20Energy%20Materials%20-%202023%20-%20Ghaur%20-%20Effective%20SEI%20Formation%20via%20Phosphazene%E2%80%90Based%20Electrolyte%20Additives%20for.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025198 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2022 |d 2023-10-26 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|