001025200 001__ 1025200
001025200 005__ 20250203103226.0
001025200 0247_ $$2doi$$a10.1093/neuonc/noad179.0817
001025200 0247_ $$2ISSN$$a1522-8517
001025200 0247_ $$2ISSN$$a1523-5866
001025200 037__ $$aFZJ-2024-02768
001025200 082__ $$a610
001025200 1001_ $$0P:(DE-Juel1)184842$$aFriedrich, Michel$$b0$$eCorresponding author$$ufzj
001025200 1112_ $$aSociety for Neuro-Oncology’s 28th Annual Scientific Meeting and Education Day$$cVancouver$$d2023-11-16 - 2023-11-19$$wCanada
001025200 245__ $$aNCOG-04. WHOLE-BRAIN STRUCTURAL CONNECTIVITY PREDICTS COGNITIVE DEFICITS IN PRETREATED PATIENTS WITH CNS WHO GRADE 3 OR 4 GLIOMAS
001025200 260__ $$c2023
001025200 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1714639421_28347
001025200 3367_ $$033$$2EndNote$$aConference Paper
001025200 3367_ $$2BibTeX$$aINPROCEEDINGS
001025200 3367_ $$2DRIVER$$aconferenceObject
001025200 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001025200 3367_ $$2ORCID$$aOTHER
001025200 520__ $$aBACKGROUNDGlioma patients frequently suffer from cognitive dysfunction potentially caused by tumor invasion or treatment effects. We hypothesized that cognitive functioning in pretreated glioma patients critically depends on the maintained structural connectivity of multiple brain networks. PATIENTS ANDMETHODSThe study included 121 pretreated glioma patients (median age, 52 years; median ECOG score, 1; CNS WHO grade, 3 or 4) who had biopsy or resection plus chemoradiation as first-line therapy. Cognitive performance was assessed by ten tests in five main cognitive domains after a median time of 14 months (range, 1-214 months) after treatment initiation. Hybrid amino acid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advanced tractography tools were used to generate whole-brain fiber count-weighted connectivity matrices. These matrices were applied to a machine learning-based model to identify predictive fiber connections, essential cortical nodes, and the networks underlying cognitive performance in the evaluated domains.RESULTSCompared to healthy controls (n=121), the cognitive scores were significantly lower in nine cognitive tests. For each test, a subset of connections between nodes (median number, 254; range, 32-542) was identified whose fiber count sum was related to the actual scores in a linear model (median R2, 0.37; range, 0.16-0.44). Leave-one-out cross-validation confirmed the model's generalizability in 7 of 10 tests (median correlation coefficient for predicted vs. observed scores, 0.47; range, 0.39-0.57). Critically involved cortical regions (≥ 10 adjacent predictive edges) included predominantly left-sided cortical nodes of the visual, somatomotor, dorsal/ventral attention, and default mode networks. Highly critical nodes (≥ 15-20 edges) included the default-mode network’s left temporal and bilateral posterior cingulate cortex.CONCLUSIONThese results suggest that the cognitive performance of pretreated glioma patients is strongly related to structural connectivity between multiple brain networks and depends on the integrity of known network hubs also involved in other neurological disorders.
001025200 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001025200 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025200 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b1$$ufzj
001025200 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b2$$ufzj
001025200 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b3$$ufzj
001025200 7001_ $$0P:(DE-HGF)0$$aMottaghy, Felix$$b4
001025200 7001_ $$0P:(DE-HGF)0$$aLucas, Carolin Weiss$$b5
001025200 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian$$b6
001025200 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim$$b7$$ufzj
001025200 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b8$$ufzj
001025200 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b9$$ufzj
001025200 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon$$b10$$ufzj
001025200 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b11$$ufzj
001025200 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b12$$ufzj
001025200 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noad179.0817$$gVol. 25, no. Supplement_5, p. v214 - v214$$x1523-5866$$y2023
001025200 909CO $$ooai:juser.fz-juelich.de:1025200$$pVDB
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184842$$aForschungszentrum Jülich$$b0$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b1$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b2$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b8$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b11$$kFZJ
001025200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b12$$kFZJ
001025200 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001025200 9141_ $$y2024
001025200 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
001025200 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
001025200 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
001025200 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001025200 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
001025200 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x2
001025200 980__ $$aabstract
001025200 980__ $$aVDB
001025200 980__ $$aI:(DE-Juel1)INM-1-20090406
001025200 980__ $$aI:(DE-Juel1)INM-4-20090406
001025200 980__ $$aI:(DE-Juel1)INM-3-20090406
001025200 980__ $$aUNRESTRICTED