001     1025200
005     20250203103226.0
024 7 _ |a 10.1093/neuonc/noad179.0817
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
037 _ _ |a FZJ-2024-02768
082 _ _ |a 610
100 1 _ |a Friedrich, Michel
|0 P:(DE-Juel1)184842
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Society for Neuro-Oncology’s 28th Annual Scientific Meeting and Education Day
|c Vancouver
|d 2023-11-16 - 2023-11-19
|w Canada
245 _ _ |a NCOG-04. WHOLE-BRAIN STRUCTURAL CONNECTIVITY PREDICTS COGNITIVE DEFICITS IN PRETREATED PATIENTS WITH CNS WHO GRADE 3 OR 4 GLIOMAS
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1714639421_28347
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a BACKGROUNDGlioma patients frequently suffer from cognitive dysfunction potentially caused by tumor invasion or treatment effects. We hypothesized that cognitive functioning in pretreated glioma patients critically depends on the maintained structural connectivity of multiple brain networks. PATIENTS ANDMETHODSThe study included 121 pretreated glioma patients (median age, 52 years; median ECOG score, 1; CNS WHO grade, 3 or 4) who had biopsy or resection plus chemoradiation as first-line therapy. Cognitive performance was assessed by ten tests in five main cognitive domains after a median time of 14 months (range, 1-214 months) after treatment initiation. Hybrid amino acid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advanced tractography tools were used to generate whole-brain fiber count-weighted connectivity matrices. These matrices were applied to a machine learning-based model to identify predictive fiber connections, essential cortical nodes, and the networks underlying cognitive performance in the evaluated domains.RESULTSCompared to healthy controls (n=121), the cognitive scores were significantly lower in nine cognitive tests. For each test, a subset of connections between nodes (median number, 254; range, 32-542) was identified whose fiber count sum was related to the actual scores in a linear model (median R2, 0.37; range, 0.16-0.44). Leave-one-out cross-validation confirmed the model's generalizability in 7 of 10 tests (median correlation coefficient for predicted vs. observed scores, 0.47; range, 0.39-0.57). Critically involved cortical regions (≥ 10 adjacent predictive edges) included predominantly left-sided cortical nodes of the visual, somatomotor, dorsal/ventral attention, and default mode networks. Highly critical nodes (≥ 15-20 edges) included the default-mode network’s left temporal and bilateral posterior cingulate cortex.CONCLUSIONThese results suggest that the cognitive performance of pretreated glioma patients is strongly related to structural connectivity between multiple brain networks and depends on the integrity of known network hubs also involved in other neurological disorders.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 1
|u fzj
700 1 _ |a Filss, Christian
|0 P:(DE-Juel1)141877
|b 2
|u fzj
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 3
|u fzj
700 1 _ |a Mottaghy, Felix
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lucas, Carolin Weiss
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ruge, Maximilian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Shah, Nadim
|0 P:(DE-Juel1)131794
|b 7
|u fzj
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 8
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 9
|u fzj
700 1 _ |a Fink, Gereon
|0 P:(DE-Juel1)131720
|b 10
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 11
|u fzj
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 12
|u fzj
773 _ _ |a 10.1093/neuonc/noad179.0817
|0 PERI:(DE-600)2094060-9
|y 2023
|g Vol. 25, no. Supplement_5, p. v214 - v214
|x 1523-5866
909 C O |o oai:juser.fz-juelich.de:1025200
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173675
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21