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A B S T R A C T

Determining, understanding, and predicting the so-called structure–property relation is an important task
in many scientific disciplines, such as chemistry, biology, meteorology, physics, engineering, and materials
science. Structure refers to the spatial distribution of, e.g., substances, material, or matter in general, while
property is a resulting characteristic that usually depends in a non-trivial way on spatial details of the structure.
Traditionally, forward simulations models have been used for such tasks. Recently, several machine learning
algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as
surrogate models. In this work, we develop and investigate the applications of six machine learning techniques
based on two different datasets from the domain of materials science: data from a two-dimensional Ising
model for predicting the formation of magnetic domains and data representing the evolution of dual-phase
microstructures from the Cahn–Hilliard model. We analyze the accuracy and robustness of all models and
elucidate the reasons for the differences in their performances. The impact of including domain knowledge
through tailored features is studied, and general recommendations based on the availability and quality of
training data are derived from this.
1. Introduction

Studying the (micro)structure-properties relation is an important
task for many different scientific fields and on many different length
scales, e.g., for meteorology with up to kilometer-sized features, for
materials science on the nanometer scale or for biological or chemical
systems on various length scales (Kohn, Underwood, & Cooper, 2018).
Mathematically, the task is to find the map from a (one-, two-, or three-
dimensional) spatial distribution of values to a single (scalar, vectorial,
or tensorial) value. For example, geological measurements of the three-
dimensional structural details of the earth’s crust are accompanied
by displacement measurements which represents an average, i.e., an
effective property, and can help to understand the general mechanism
for shallow earthquakes (Tarasov, 2019). In the field of weather
forecasting, spatial details such as the structure of clouds or streamlines
of the airflow determine properties such as cloud top temperature
and particle effective radius (Rosenfeld, Woodley, Lerner, Kelman, &
Lindsey, 2008). Biological structures consist of molecules and cells, that
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are permanently evolving. Their subcellular interactions give rise to
complex properties such as transport properties or how cells age (Li,
Tang, & Guo, 2021). In the domain of material science and in partic-
ular, with regards to metallic materials, the notion of microstructure
refers to any phenomena that ‘‘lives’’ on a small scale (i.e., small
relative to the specimen size) and that disturbs the otherwise perfect
crystal lattice (Callister, 2007). The property is typically the result of
the interplay of many different physical or chemical mechanisms; a
property is an averaged quantity where the details of the underlying
microstructural length scale usually are no longer directly observable.
Two typical examples are: (i) interstitial point defects on the atomic
scale that gives rise to hardening behavior in alloys observed during
mechanical testing of centimeter-sized samples (Baker, 2022), or (ii)
the property of strength, which increases considerably with a decrease
in grain size (Opiela, Fojt-Dymara, Grajcar, & Borek, 2020).

To predict such properties based on microstructures of different
length scales, dedicated simulation models have been developed
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(Nguyen, Choi, Udaykumar, & Baek, 2023; Seif, 2023; Sharma et al.,
2023). On the (sub)nanometer scale, one of the commonly utilized
methods is density functional theory calculations, which investigate
the electronic structure of many-body systems to acquire the properties
of the electron system based on the fundamental laws of quantum
mechanics (Dreizler & Gross, 2012). Another popular method, molec-
ular dynamics simulation, predicts the trajectory of each atom based
on Newton’s laws (Hospital, Goñi, Orozco, & Gelpí, 2015). These two
methods can calculate very accurately the structures and properties
of a material on a microscopic scale, but the computational cost for
large-scale problems is prohibitive. If the problem can be written in
terms of continuous field equations governed by partial differential
equations, numerical methods such as the finite element method (Hueb-
ner, Dewhirst, Smith, & Byrom, 2001) are often used. However, the
computational cost can still be high, with single simulations taking up
to several days. Additionally, the numerical solution sometimes suffers
from numerical instabilities, which makes performing simulations still
a challenging task.

Recent development of statistical ML and deep learning (DL) algo-
rithms have the potential to act as surrogate models and/or provide
alternatives for predicting the structure–property relation in science
and engineering. This helps to overcome the limitations of classical
methods in terms of computational cost and robustness (Gupta &
Zhang, 2024; Jung, Yoon, Park, Kim, & Kim, 2019; Wei et al., 2019).
For example, DL approaches have been applied to weather forecast-
ing to predict the likelihood of weather conditions at a given time
and location based on numerous atmospheric and oceanic properties
such as pressure, humidity, wind velocity and temperature from radar
or weather satellite images (Espeholt et al., 2022). ML-based short-
term forecasting of earthquakes using remote-sensing (image) data was
demonstrated to outperform conventional approaches (Xiong et al.,
2021). The data augmentation process with discrete waveform trans-
forms (DWT) and singular value decomposition (SVD) helps to increase
the variety of earthquake data for training ML models. These models
are then used to predict the response of nonlinear systems for unseen
earthquakes or to replicate non-linear FE model prediction (Parida,
Bose and Apostolakis, 2023; Parida, Bose, Butcher, Apostolakis and
Shekhar, 2023). Additionally, such methods have been applied to
computational biology (Sapoval et al., 2022) for protein structure
prediction from its amino acid sequences (Jumper et al., 2021; Tun-
yasuvunakool et al., 2021), for predicting the melting temperature
of proteins based on their amino acid sequence (Gorania, Seker, &
Haris, 2010), or for predicting the ligand binding sites in the protein
structures (Kandel, Tayara, & Chong, 2021). The field of materials
science also benefits from ML methods. In the context of surrogate

odels, Nakka, Harursampath, and Ponnusami (2023) created a DL-
based model for encoding material properties into the microstructure
image so that the model learns material information. Messner (2020)
use Convolutional Neural Networks (CNN) as ‘‘sufficiently accurate
surrogate models’’ for solving the inverse design problem that produces
optimal structures with required mechanical properties. Further ex-
ample applications in the context of structure–property relations are
the ML-based prediction of the hardness and relative mass density of
nanocomposites based on microstructural texture variance produced
by different laser parameters (Yu, Mo, Chen, & Yao, 2021), the dif-
fusivity and permeability based on the geometry of the pore space
utilizing artificial neural networks (Prifling, Röding, Townsend, Neu-
mann, & Schmidt, 2021), the effective heat conductivity for highly
heterogeneous microstructured materials (Lißner & Fritzen, 2019), the
surrogate modeling of the mechanical response of elasto-viscoplastic
grain microstructures (Khorrami et al., 2023) or the prediction of
mechanical properties of two-phase microstructures of epoxy-carbon
fiber aerospace composite (Ford, Maneparambil, Rajan, & Neithalath,
2021). Most of these approaches are concerned with mapping an input
to an output. A variety of approaches have incorporated more general
2

physics knowledge into the model, mostly into the loss function, such
as Zhang, Liu, and Sun (2020a, 2020b) who used a physics-guided
convolutional neural network and physics-informed multi-LSTM net-
works as surrogate models for structural response prediction. Raissi
(2018) introduced physics-informed neural networks for solving non-
linear partial differential equations, and Eghbalian, Pouragha, and Wan
(2023) develops an Elasto-Plastic Neural Network for replacing the
conventional yield function, plastic potential, and the plastic flow rule.

Many of these examples, however, consider highly specialized sci-
entific situations where the focus is on solving a particular domain-
scientific problem with an as high as possible accuracy. Systematic
studies with an emphasis on aspects of the training behavior, the ability
to generalize, or the performance w.r.t. to the amount of data are rare.
This makes comparison between the work of different groups difficult
and it is far from being trivial to estimate if a model could be reused
for a different problem class as well.

In this work, we investigate the benefits and drawbacks of a range of
machine learning approaches for predicting properties from structures
of two fundamentally different, materials science datasets. Besides
different ML model complexities, we also investigate the importance
of incorporating domain knowledge through feature engineering. The
datasets are obtained from materials scientific simulations and cover
two extremes: The first governs the self-organized magnetization of
a domain and relates the spatial magnetization structure to the tem-
perature. It is based on randomness and stochastic processes that are
simulated using a Monte Carlo method, resulting in structures with
very sharp interfaces and discrete changes in time. The other dataset
is obtained from a simulation of the evolution of two different phases,
which is a smooth and continuous process given by a set of coupled
partial differential equations. In both cases, the structure can be rep-
resented as an image and the property is a scalar number. These two
models are representative for many problems encountered in physics
and engineering.

The following machine learning approaches are investigated: (i)
a piecewise-constant regression model together with simple features,
used as a baseline model; (ii) a support vector regression model with
physics-based features; (iii) a non-standard setup of a convolutional
neural network approach with three input channels where the orig-
inal data is accompanied by Fourier and wavelet transformations as
additional features; (iv) a combination of a pretrained ResNet and a
principal component analysis used as input features for a support vector
regression model; (v) several ‘‘off-the-shelf’’ CNNs with different types
of pre-training.

2. Data generation: The materials scientific problems and the
simulation methods

For all investigations, two datasets will be used that represent the
evolution of two different types of microstructures. The datasets are
obtained from materials scientific simulations and cover two extremes:
while the first is based on stochastic processes where randomness and
self-organization are important, the second dataset is obtained from
the solution of coupled partial differential equations and describes
flow-like smooth and continuous processes. Fig. 1 shows examples of
microstructures (the insets A–F) together with the respective property
(shown on the vertical axes of the two curves). The underlying theory
and the implementation of the simulation models are summarized in
Appendix A. In what follows we only describe the datasets.

2.1. The Ising dataset

The two-dimensional microstructure represents the magnetization
of a domain with two different magnetic spin directions, indicated by
the black and white color in Fig. 1a. The microstructure depends on the
chosen temperature, which is considered as the property. The evolution
of the system is determined by a Metropolis Monte Carlo algorithm. For

a given temperature, the simulation starts with a random distribution of
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Fig. 1. (a) Visualization of the final state of magnetization from each given temperature. The vertical blue arrow shows an example simulation trajectory of a specific temperature
𝑇 = 100. (b) The evolution of energy and the change of microstructure over time on various simulation run in Cahn–Hilliard model. The blue arrows illustrate the simulation
trajectory.
Fig. 2. Histograms of training data distribution for the Ising datasets (left panel) and the Cahn–Hilliard dataset (right panel).
spin values and evolves for a number of steps. The final microstructure
is saved as a black and white image, where black (0) represents a
negative spin and white (255) represents a positive spin. A single sim-
ulation requires a few seconds of computational time and results in a
single image. At increasing temperature 𝑇 above a critical temperature
𝑇𝑐 ≈ 2.269 (in non-dimensional units) the resulting structures become
increasingly random. They start the transition towards an ordered state
when the temperature is decreasing below the critical temperature 𝑇𝑐 ;
where larger features become visible and the randomness vanishes.
Fig. 1a shows example images at three different stages, labeled as A,
B, and C together with the (dimensionless) temperature values of 11,
102 and 222, respectively. The temperature values are converted from
0..2𝑇𝑐 to 0..255 for the dataset. The whole dataset consists of 50,000
images. The distribution of the corresponding temperature values can
be seen in Fig. 2a – a mainly uniform distribution which results in a
balanced training dataset.

2.2. The Cahn–Hilliard dataset

The microstructure of the Cahn–Hilliard model represents two
phases, e.g., the two different chemical elements of an alloy. The
evolution is governed by a set of coupled partial differential equa-
tions. This system is more complex than the Ising model because the
number of different physical phenomena considered is significantly
larger (see Appendix A for further details). This also results in a high
computational cost of several hours for a single simulation which
might make machine learning-based approaches good candidates as
replacements. Three microstructure snapshots are shown in Fig. 1b.
Each image represents the microstructure corresponding to the system’s
energy with values of 7054 J μm−3, 1348 J μm−3, and 589 J μm−3.
3

20 simulations are performed with random initial microstructure and
values in between 0 and 1. In order to reduce the computing time,
we use a non-constant time stepping with exponentially increasing
time steps. The simulation exhibits two parts: a first part where the
energy decays rapidly and a second part, where the energy decreases
only slowly. 2000 steps are taken in the first part where the time step
increases; the microstructure data is stored at every step. The second
part consists of 10,000 steps with a constant step size. The image
data are exported at every 10th step of this part of the simulation.
Altogether, the dataset contains ≈60, 000 images. The distribution of
the energy values of the dataset can be seen in Fig. 2b which shows
a strong imbalance with significantly more data for the low energy
regime. We have chosen to use this kind of sampling because it is
close to a ‘‘real world’’ dataset. Creating a uniformly distributed dataset
requires significantly more simulation time and is, in most situations,
not feasible.

3. Methods

Learning to predict properties from (micro)structures is a regression-
type of a problem. For such problems, a large range of different
statistical and deep learning methods exist. Our selection of investi-
gated methods is guided by the following considerations: (i) A simple
statistical learning method with as simple as possible features should
be used as a baseline method; (ii) statistical learning methods can
perform very well together with appropriate features; (iii) deep learn-
ing approaches typically do not require sophisticated features but
sometimes requires larger training datasets. In the following, we start
by introducing and deriving the used features. Subsequently, the ML
models used in this study are selected.
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3.1. Feature engineering

Three different types of features are used throughout this work: a
very simplistic feature that does not require any domain knowledge and
two physics-based features of different complexity.

3.1.1. A minimalistic, domain-agnostic feature (‘‘grad’’)
For the statistical learning methods, we start by creating a set of

generic features that do not require knowledge of the scientific details
behind the data generation. By taking a look at the six microstructure
images A–F in Fig. 1 we observe that differences could be related to
the total length of the boundary or interfaces between black and white
regions. In image analysis, a gradient filter would be the most simple
way of extracting such information. Therefore, as a simple feature 𝑋,

e use the following function

= 1
𝑛 ⋅ 𝑚

∑

𝑖,𝑗
‖∇𝑢(𝑖, 𝑗)‖ = 1
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∑
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√

(

𝜕𝑢[𝑖, 𝑗]
𝜕𝑥

)2
+
(

𝜕𝑢[𝑖, 𝑗]
𝜕𝑦

)2
(1)

where 𝑢[𝑖, 𝑗] is the value of the pixel in row 𝑖 and column 𝑗 of the
image array 𝑢, and 𝑚 and 𝑛 are the number of rows and columns,
respectively. The gradient of 𝑢 is approximated by a central finite
difference scheme. This feature can be easily used together with a broad
range of other datasets as well and does not require further domain-
specific knowledge. In the remainder of this work, we abbreviate this
feature as ‘‘grad’’.

3.1.2. Feature engineering: The power spectral density (‘‘physFeat1’’)
Due to the aspects of the underlying physics problem, the mi-

crostructure images often exhibit periodicity, symmetry, or rotational
invariance. For CNNs, this can be considered through hard or soft
constraints. Hard constraints are induced by architecture modifications,
such as using group equivariant convolution instead of regular convo-
lutions (Cohen & Welling, 2016). This strategy cannot be transferred
to statistical learning methods. Soft constraints, on the other hand,
are imposed through training with specific augmentation techniques,
e.g., applying specific translations to images to mimic periodicity, ran-
dom flipping, or rotation of images. However, this does not guarantee
that the constraints are exactly enforced, and the physics problem may
be violated. As an alternative to applying soft or hard constraints,
we will incorporate microstructural constraints using physics-inspired
feature engineering.

Which physics-based features are suitable to relate the microstruc-
tures to their properties? Both datasets were obtained by enforcing
periodic boundary conditions. The resulting properties are both in-
variant under mirroring and rotation by 90 degrees. Furthermore,
the Ising model represents a situation in which a microstructure can
undergo a phase transition, i.e., a small change in the temperature
results in a significant and qualitative change of the structure. Such
a phase transition manifests itself in long-range, collective behavior
which is caused by short-range interaction. Roughly speaking, this is
related to the fact that at the critical point the system transitions from
small fluctuations (the size of the black and white patterns) to large
fluctuations, cf. Fig. 1, and there are fluctuations of all wavelengths
directly at the critical temperature. As a consequence, physics-based
feature engineering should result in descriptors that are able to capture
characteristics of the distribution of various wavelengths.

A suitable measure is the PSD, a “multi-scale measure” used in
signal processing to describe the distribution of wavelengths. The PSD
is obtained via Fourier transformations of an image from which the
Fourier amplitudes can be extracted; they are by definition translation
invariant. This is followed by radial averaging, making the resultant
features invariant to 90-degree rotation and flipping. As a result, two
equivalent images from a physics perspective also result in identical
PSDs (see, e.g., the applications in the context of quality assessment of
fingerprints (Shen et al., 2022) or for statistical analysis of shear bands
4

in Sandfeld and Zaiser (2014)). (
Fig. 3 shows the PSD for three different microstructures obtained
from the Ising and the Cahn–Hilliard dataset. E.g., in the left column,
we observe that a significant portion of the power is located in fea-
tures with wavenumbers 𝑘 ≤ 3, i.e., patterns that are ≥1∕3 of the
image size. Furthermore, the PSDs roughly exhibits a linear behavior
in the double logarithmic plots (with the exception of the second
Cahn–Hilliard example). Even though it is obvious that a linear fit is
only a rough approximation, it is well able to differentiate between
microstructures at different temperatures and energy values. The slope
and intercept of the fitted lines after back-transformation from the
double logarithmic scale will serve as the features that are used to
characterize each microstructure image. The two left scatter plots in
Fig. 4 show the temperature and energy, respectively, as a function of
these two features for each training dataset. Visual inspection shows
that even though the points are clearly localized, the features of the
dataset also contain significant scatter. Additionally, the Cahn–Hilliard
dataset exhibits an unexpected drop at an energy value of ≈1200 J∕μm3.
This is a side effect of the above line fit which indicates, in this region,
a bad representation of the data (cf. the second row of Fig. 3b). In the
remainder of this work, we abbreviate these two features describing the
microstructure through the approximated PSD as ‘‘physFeat1’’.

3.1.3. Feature engineering: Extended physics-based features (‘‘physFeat2’’)
The second physics-based set of features is also based on the PSD

but is further fine-tuned for accuracy. Fig. 5 schematically shows the
feature engineering pipeline that is now explained. A side effect of the
strong dimensionality reduction of the previous two features is loss of
information. We attempt to make up for this by considering the whole
PSD curve and not only a fit of a straight line. Furthermore, additional
features are introduced that capture new aspects: instead of working
with the PSD of only the original image, we create an additional image
array, which includes information about the interfaces, similar to the
‘‘grad’’ feature:

‖∇𝑢[𝑖, 𝑗]‖ =

√

(

𝜕𝑢[𝑖, 𝑗]
𝜕𝑥

)2
+
(

𝜕𝑢[𝑖, 𝑗]
𝜕𝑦

)2
, (2)

where 𝑢[𝑖, 𝑗] is, as before, the value of the pixel in row 𝑖 and column
𝑗. For each image, the PSD is obtained, which consists of a one-
dimensional array of 32 values. The two arrays are stacked, resulting
in a 2 × 32 array. An issue that can arise during computing the PSD are
numerical errors due to high PSD values, causing extreme value ranges.
As a remedy, feature normalization by logarithmic scaling is performed:

PSDscaled(𝑥) = log10 (PSD + 1) , (3)

where 1 is added to avoid computational problems if the PSD has a
alue of 0.

.1.4. Combined image embedding and dimensionality reduction (‘‘CNN-
CA’’)

The aim of this last set of features is twofold: (i) to achieve high
ccuracy without having to rely on domain knowledge, (ii) to allow for
regression model that is computationally cheap and fast to train. The
NN-PCA features are obtained by first performing image embedding,

ollowed by a dimensionality reduction, as summarized in Fig. 6a. For
he image embedding a ResNet18 with pretrained ImageNet weights
Deng et al., 2009) is used. The CNN is then trained with the images,
ut for the sake of achieving a low training time, we did not do any
ine-tuning of the network. The temporary features are the weights
aken from the average pooling layer of the already trained model
n the form of a vector with 512 elements. To reduce the dimen-
ionality, a principal component analysis (PCA) is then performed,
nd the principal components are used as features for the regression
odel. Using PCA without the image embedding would result in bad
erformance as the microstructural information is not well represented
see Fig. B.12). The number of components is a hyperparameter that
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Fig. 3. Microstructure and corresponding PSDs for the Ising dataset (left) and the Cahn–Hilliard dataset (right). The PSD is shown on a double logarithmic scale, where 𝑘 is the
wavelength and 𝑃 (𝑘) is the normalized power. The thin red line is a linear fit on the double logarithmic scale while the values of intercept and slope of the fitted line are given
after backtransformation to the linear scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Visualization of the two scalar features as a function of the investigated property. The top row shows the Ising dataset, the bottom row shows the Cahn–Hilliard dataset.
For getting a better idea of the data distributions the blue data points are plotted slightly translucent. The middle and right columns show projections of the feature space and
fitted curves, representing the model response. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. PSD-based feature engineering pipeline, specifically tailored to the considered type of data.
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Fig. 6. Summary of the CNN-PCA-SVR model in (a) and visualization of the first two principal components of the ResNet18 weights for the Ising dataset (b) and the Cahn–Hilliard
dataset (c).
is investigated in Fig. B.13; the first two components of the Ising and
the Cahn–Hilliard dataset are shown in the appendix and in particular
in Fig. 6b and c. The data distribution in (b) can be divided into
three zones of low, mid, and high temperatures. For low temperatures,
the data distribution has a larger variance than that obtained for the
mid and high temperature zones. In the high temperature zone, the
two components become strongly localized. The principal components
for the Ising dataset are shown in Fig. 6b while Fig. 6c shows the
components of the Cahn–Hilliard dataset.

3.2. Overview of the used machine learning models

Altogether four fundamentally different ML-based approaches are
studied and introduced subsequently. An overview together with the
used abbreviations is given in Table 1. The first two methods are
statistical ML methods and use the above introduced features; grad-
PCR will be used as a baseline model. Note, that the second type of
physics-based feature, physFeat2, requires a regression method that is
able to make use of the complex features. physFeat2 together with
the very simple piecewise constant regression showed a performance
below the baseline model and therefore was not considered here. The
last two ML methods are CNN-based learning approaches where the
first method, CNN, does not require any preprocessed features. The
second method, MuCha-CNN, is tailored to the specifics of images and
indirectly makes use of some of the information that is also contained
in the PSD. Subsequently, all models are briefly introduced.

3.2.1. Piecewise Constant Regression (PCR)
Piecewise constant regression (PCR) is a particular type of regres-

sion tree and is one of the simplest ML methods for regression. Here, it
is used either with the gradient-based feature (grad) or with the slope
and intercept from the PSD (physFeat1). The training consists of (a)
binning the property data with a bin size of 𝛥 = 1 (i.e., temperature for
the Ising dataset and energy for the Cahn–Hilliard dataset) and (b) “fit-
ting” piece-wise constant approximations to the binned feature data by
computing the mean values. The motivation for choosing this method
in combination with the grad features is to use it as a baseline model
(grad-PCR). The thin solid line in the middle and right panels of Fig. 4
shows the model responses. Predicting temperatures or energies works
as follows: for a given microstructure, compute the PSD, and obtain
slope and intercept values of the fitted line, as explained above. Then,
search for the nearest point in the learned slope-intercept space and
get the corresponding temperature or energy. Slope and intercept have
different physical dimensions, and therefore, dimensionless scaling of
the data to the range [0, 1] is performed before the distance can be
computed.
6

Table 1
Overview of the investigated features and ML methods.

Abbreviation Features ML model

grad-PCR Simple sum of the norm of
the gradient, Section 3.1.1

Piecewise constant
regression (PCR),
Section 3.2.1physFeat1-PCR Intercept & slope of the fitted

to the power spectral density

grad-SVR Simple sum of the norm of
the gradient, Section 3.1.1

Support vector regression
(SVR), Section 3.2.2

physFeat1-SVR Intercept and slope of the line
that was fitted to the power
spectral density

physFeat2-SVR Highly-specialized,
physics-based preprocessing
pipeline for obtaining feature,
Section 3.1.3

CNN-PCA-SVR Image embedding (ResNET)
and principal components
analysis for automated feature
extraction, Section 3.1.4

CNN (input for CNN: the image
w/o further preprocessing or
feature extraction)

Several CNN architectures;
2 pretraining approaches,
Section 3.2.3

MuCha-CNN (input for CNN: the image
itself, as well as a Fourier and
a wavelet transformation of
the image)

ResNet34 with simple
training protocol,
Section 3.2.4

3.2.2. Support Vector Regression (SVR)
Support vector regression (SVR) (Vapnik, 2000) is one of the com-

monly used methods for regression in statistical learning, which per-
forms well as long as the dataset is not too large (several tens of thou-
sands of data records are still feasible). We used the implementation of
the epsilon-insensitive SVM provided by scikit-learn (Pedregosa et al.,
2011). For the two simpler features, grad and physFeat1, determining
the most suitable hyperparameter was done manually by trying 3–5
different values, starting from the scikit-learn default values. For the
combination with the more complex feature physFeat2 the goal was to
achieve an as high as possible accuracy. Therefore, a systematic hyper-
parameter search was performed. The ranges of the hyperparameters
and final selected values are available in Appendix B.1.

3.2.3. Convolutional Neural Network approaches (CNN)
As DL networks of different depth and degrees of complexity – with-

out further alterations or adaptions – we used a ResNet18, a ResNet152,
a DenseNet121, and an EfficientNet-B0. All of these architectures have
achieved very good results for ImageNet (Deng et al., 2009) classifica-
tion problems, where EfficientNet-B0 performed particularly well (Tan
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Fig. 7. An example of three channel images of the Ising dataset (top row) and Cahn–Hilliard dataset (bottom row), respectively: (a) and (d) original image; (b) and (e) fast-Fourier
transform of the image; (c) and (f) wavelet transform of the image.
& Le, 2019). Each of these models will be used with two types of
initial weights: (i) we use pretrained models with weights taken from
ImageNet, (ii) we train the models that were initialized with random
weights from scratch. Transfer learning is used by freezing the whole
pretrained model and then training only the final layer. Once the layer
has been optimized, we train the whole model using a learning rate of
10−4. The training data itself was standardized by subtracting the mean
and dividing by the variance. Both datasets are split into training and
test data, and 20% of the training data is kept as validation data. Once
the model has been optimized, we evaluate the model performance on
the test data. During the training, we use early stopping such that if the
validation loss does not improve for 20 epochs, we stop the training.
Furthermore, the training starts with a learning rate of 10−3 and is
reduced to half of its value with a minimum of 10−5 when the monitored
metric does not change anymore. All architectures are implemented
using the Pytorch framework (Paszke et al., 2019).

3.2.4. A Multichannel Convolutional Neural Network (MuCha-CNN)
Convolutional neural networks (LeCun, Bengio, & Hinton, 2015) are

a special type of deep neural network that have been widely used to
process image data. One of their main aspects is convolutional layers,
which act as feature detectors, making classical feature engineering
obsolete. The input for CNNs may consist of image data with three
intensity channels (one for each of the colors red, green, and blue).
Instead of the three color channels, we use one layer for the grayscale
image; the second and third channels contain the magnitude of the
Fast Fourier transformation (FFT) and the wavelet transformation of
the grayscale image, respectively. Since the PSD is also based on FFT,
the information contained in the additional images is related to the PSD
and could be considered as an additional feature. Further information
is given in Appendix C. Examples of the content of the three channels
are shown in Fig. 7.

We used residual networks with 34 layers (ResNet34) (He, Zhang,
Ren, & Sun, 2016), which is implemented using the Pytorch frame-
work (Paszke et al., 2019). The size of each input channel is 64 × 64
pixels, and the respective ranges are scaled such that all values are
in between 0 and 255. Fig. 7b shows the magnitude-spectrum from
a complex array obtained by applying the Fourier transform using
Numpy (Harris et al., 2020). Fig. 7c shows the resulted image ob-
tained by applying the wavelet transform using the Python package
PyWavelets (Lee, Gommers, Waselewski, Wohlfahrt, & O’Leary, 2019).
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This image is the so-called diagonal detail which results from vertical
and horizontal highpass filtering. Since our goal is not to study the
effect of various wavelet functions, we pragmatically chose one of the
default functions from the “sym-family” functions. For training, the
weights of the multichannel CNN are randomly initialized. Then, the
network is trained for 100 epochs with a fixed learning rate of 0.001
and momentum equal 0.9. As an optimizer, we used stochastic gradient
descent and the L1 loss.

4. Results and discussion

All models were trained on a training dataset and evaluated on
a separate testing dataset. The testing dataset was identical for all
models and comprises for the Ising dataset of 1000 images covering
the whole temperature range (≈2% of the total dataset) and 6000
images for the Cahn–Hilliard dataset obtained from two full, individual
simulations (≈10% of the total dataset). These test datasets are kept
entirely separated from the training process. The performance of the
models was assessed by the RMSE and the 𝑅2 score. Results for different
models are shown in Table 2. For the Ising dataset, all approaches show
prediction accuracies that are roughly in the same order of magnitude
(RMSE = 12.15 ± 4.15). The baseline model (grad-PCR) has only a
slightly worse RMSE than the other models, and the best model(s)
achieve half of the RMSE of the baseline model. For the Cahn–Hilliard
dataset, the differences between models are more pronounced (RMSE =
171.5 ± 160.5). In particular, the gradient-based baseline model grad-
PCR, as well as grad-SVR, perform rather badly with RMSE values
of 332 and 262. SVR with the more detailed, physics-based features,
physFeat2-SVR, and the multichannel CNN perform best, followed by
the vanilla ResNet18. Note that the values cannot be directly compared
to those of the Ising model, but for both datasets, the best performing
models are physFeat2-SVR, the CNN (ResNet18) with training from
scratch, and MuCha-CNN.

To understand which details of the datasets are more difficult to
predict than the others, a confusion matrix for all models, and both
problems is shown in Fig. 8 for the true vs. the predicted properties of
the testing data. In the following, we first discuss the general model
performance and then discuss the advantages and disadvantages of all
individual models.
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Table 2
Root mean square error (RMSE) and the 𝑅2 score of the predictions of all models and for both datasets.

grad-PCR physFeat1-PCR grad-SVR physFeat1-SVR physFeat2-SVR CNN-PCA-SVR CNN (ResNet18) MuCha-CNN

Ising (RMSE): 16.3 14.5 14.1 12.3 8.5 10.0 8.0 8.9
Ising (𝑅2): 0.951 0.961 0.963 0.972 0.987 0.981 0.988 0.985
CH (RMSE): 337 44 262 151 12 72 22 11
CH (𝑅2): 0.674 0.994 0.802 0.934 1.0 0.985 0.999 1.0
Fig. 8. Confusion matrices of all models and used futures for (a) the Ising dataset and (b) the Cahn–Hilliard dataset. The red marker illustrate the results when the simple norm
of the gradient was used as a feature. The dashed red line indicates the values for a perfect prediction. Vertical and horizontal range from each subfigure of (a) and (b) are 0..256
and 0..8000, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.1. General analysis of the prediction errors

Analysis of the Ising dataset. Fig. 8a shows the ground truth temper-
ature vs. the predicted temperature for the Ising dataset. We observe
for the baseline model that the accuracy for intermediate temper-
atures is better than that for low or high temperatures. For these
extreme temperatures, the magnetization values of the corresponding
microstructures are either 0 or 1. Taking a look at how all models per-
form in the low temperature regime at 𝑇 ⪅ 10, we see that MuCha-CNN
performs best, however, all models’ predictions are affected by errors
where predicted temperatures of low temperature microstructures are
too high. In the high temperature regime, MuCha-CNN exhibits a
slightly larger scatter as, e.g., compared to the regular CNN approach
which performs better than all other models for high temperatures.

The low temperature regime is more difficult to predict because
the changes in the images that correspond to changes in the temper-
ature are smaller than those in the higher temperature regime. The
underlying physical reason for this is that low temperature results in
considerably slowed down dynamics of the system. The difficulties of
the predictions in the high temperature regime have a different reason.
There, the microstructure tends to become increasingly random, and
the temperature differences are related to increasingly small remnants
of the ordered structure.

What is the influence of using the ‘‘physical features’’ (i.e., the
power spectral density)? In the first two confusion matrices from the
left, we used both the simple gradient-type features as well as the
PSD-features (shown as the red and blue markers). There, we see that
the use of physical features has the most pronounced influence on
low temperature predictions. Furthermore, the complex SVR model
benefits well from more complex features; in particular, physFeat2-SVR
qualitatively shows one of the best confusion matrices with balanced
performance for all temperatures.

Analysis of the Cahn–Hilliard dataset. Models trained with the Cahn–
Hilliard dataset have the worst RMSE for the two gradient-feature-
based methods which also shows in the confusion matrix in Fig. 8b
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(the red marker in the two leftmost plots). In particular for low energy
values one observes artifacts that result in different distributions for
the two simulations of which the testing dataset consists. The simplistic
features are not able to capture the microstructural differences at low
energy values properly and are not able to generalize to microstruc-
tures from other simulation runs. Using the physical PSD features, this
behavior changes, and in particular the physFeat2-SVR model performs
nearly perfectly.

In fact, there is only one model that performs better: the MuCha-
CNN, which operates with two additional types of images obtained
from a wavelet and Fourier transform. These two additional channels
contain information about different wavelengths and spatial structures
and, therefore, are related to the physical features. The CNN (ResNet18)
achieves nearly identical prediction performance.

From the confusion matrix, we see that the CNN-PCA-SVR model
with 150 principal components performs worse than all other models.
Generally, CNN-PCA-SVR is more accurate in the low energy regime as
compared to the higher energies. We also can clearly see differences
between the two simulation runs contained in the testing dataset. This
also might be an indicator that the training dataset is not sufficiently
large enough for this method, and the model fails to generalize prop-
erly. Since the physFeat2-SVR model with highly specialized features
shows nearly perfect predictions, it follows that the cause of the bad
performance is the feature extraction by CNN and PCA. Principal
component analysis is a linear method and, therefore, might be limited
in terms of the features that can be represented.

A particular challenge of this dataset is that it is strongly imbalanced
with regards to the energy distribution, cf. Fig. 2b. This is the reason
why the RMSE value of CNN-PCA-SVR is better than those for the grad-
PCR and grad-SVR, even though the confusion matrix of these two
methods suggests the contrary. The reason for this is the high amount
of data for lower energies, where these two models perform particularly
badly. The imbalance of data is also the reason why almost all models
perform better in the low energy range, as there is a large amount of
data. Furthermore, also the microstructural patterns in the images at
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Fig. 9. Prediction performance for different sizes of training datasets for the Ising datasets (left) and the Cahn–Hilliard dataset (right). The 𝑥-axis of the insets are plotted in
log-scale to reveal the low percentage area. Markers show the performance for 0.1%, 0.5%, 1%, 10%, 20%, 40%, 60%, 80% and 100% of the total training data for both datasets.
low energies are clearly developed and distinct. Predictions in the high
energy regime are slightly less accurate, which is partially due to the
smaller amount of data. Additionally, the variance among the training
examples is larger in this energy regime.

4.2. Influence of the size of the training dataset

An important goal is that models are able to achieve a high predic-
tion accuracy. However, in many practical situations, it can be equally
important to achieve good results with a small dataset, e.g., because
more data might not be available or computationally too costly to ob-
tain. The training dataset of the Ising and Cahn–Hilliard model contains
49,000 images and 54,000 images, respectively. To see the impact of
the size of the datasets, the RMSE results for training with different
size percentages are compared in Fig. 9. For both datasets, there is a
pronounced drop in the RMSE values when the percentage of training
data is increased from 0.1% to 10%; from 10% to 100%, there is only a
slight decrease. The corresponding confusion matrices for all sizes can
be seen in Appendix C. In general, using at least 10% of the original
datasets is a good compromise. These are approximately 5000 images.
For small datasets of 50 images, the SVR methods clearly outperform
CNN-based approaches for the Ising model. For the Cahn–Hilliard
model, at least 50 images are required, and only physFeat2-SVR is
able to perform well. Additionally, the two CNN-based methods show
acceptable but less robust performance as they are still dependent on
the chosen testing samples.

4.3. Required computational and feature engineering effort

The time required for training (including computing the feature
values) and for predicting for each of the ML approaches as a function
of the size of the training dataset are shown in Fig. 10. All times were
measured on an 8-core workstation with Intel Core i9-10850K CPU, 32
GB RAM, and a Nvidia GeForce RTX 3060 GPU with 12 GB RAM. We
observe a huge difference in the times required for training the models:
the baseline model grad-PCR is the simplest model; it only requires
binning and averaging of the training data and, therefore, is the fastest
to train. Obtaining the gradient of the image is computationally cheaper
than computing the PSD – for the used implementations, roughly by a
factor of two. The PCR models require very little training time (even
though the implementation was not optimized): it is almost the same
for every fraction of the Ising dataset and takes around 1.2 s. For
training, excluding the computation of the features and predicting it
takes 0.5 s. For the Cahn–Hilliard dataset, the computational times show
9

only small deviations from the times for 10% of the data: it is around
33 s for training and less than 10 s for predicting.

The SVR models require substantially more training time as the
size of the datasets increases. The training time additionally depends
strongly on the features. For the simple grad-SVR approach, the training
time without feature calculation increases exponentially with the size
of the dataset; it takes around 5400 s and 2300 s for 100% of the Ising
and the Cahn–Hilliard dataset, respectively. The reason is that the
model complexity (the number of support vectors) increases with larger
datasets. This also shows in the more than exponentially increasing
prediction times.

CNNs and MuCha-CNN require, by comparison, the most time for
training. Additionally, this also depends strongly on the complexity
of the chosen model architecture. Furthermore, factors such as batch
size can significantly impact the training and prediction times. E.g.,
even though the training process used in CNNs does not use any
prepossessing that could increase the train time, we used a batch size of
32 during the training and employed early stopping where we waited
for 20 epochs to see if the results were improved. These are two
examples where the training time could have been reduced if a loss
of accuracy would be acceptable.

The last aspect is the effort that is required to engineer the features
for the PCR and SVR models. While the physFeat2-SVR model achieves
for both datasets superior prediction accuracy, the identification of
physically reasonable features and the concomitant hyperparameter
study might outweigh the high accuracy. This also holds for MuCha-
CNN, even though no hyperparameter tuning was performed. In case
there are no obvious physical features, one of the relatively shallow
CNNs is a good choice. However, the amount of required training data
is somewhat higher than that of other models. A fast-to-train model
with still acceptable accuracy is the CNN-PCA-SVR. It is also the model
that makes predictions considerably faster than all other models (except
for PCR for larger datasets).

4.4. General discussion

Feature engineering methods, which reduce features’ dimensions
and extract the essential information from data, depend strongly on
the nature of data and may need particular care (Nguyen & Holmes,
2019). Therefore, studying, preprocessing the data, and choosing an
appropriate technique requires dedicated effort. The PSD features that
we choose for several approaches, such as physFeat1-PCR/-SVR, or
physFeat2-SVR can be useful for various types of problems, as was
shown based on the two datasets investigated in this work. Clearly,
the next question is, if these approaches can also be used for data
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that visually looks very different. To answer this question a very
different kind of simulation dataset was investigated, which is from
the domain of computational fluid dynamics. There we predicted the
Reynolds number (as ‘‘property’’) from simulated images of fluid flow
(as ‘‘structure’’). In Fig. E.20 the results are shown. The overall
accuracy is slightly lower as compared to the two mainly investigated
datasets. The MuCha-CNN method is independent of the nature of data
since it can extract the most important features of the image data
without having to rely on engineered features (see Figs. 8 and E.21)
and therefore performed considerably better. Nonetheless, most of
the methods still perform rather well. Thus, using the PSD features
or building machine learning models in situations where the data
ostly consists of fluctuations and patterns of various wavelenghts is a

easonable approach.

. Conclusion

We investigated the problem of learning and predicting the so-
alled structure–property relation, i.e., the mathematically non-trivial
apping from a two-dimensional structure to a scalar value. For this,
e compared the predictive power of several machine learning models
statistical learners as well as deep learning-based models – for pre-

icting the properties of microstructure from the Ising model and the
ahn–Hilliard model. One of the challenges was to cope with strongly

mbalanced datasets in case of the Cahn–Hilliard model.
We found that statistical learning approaches that include a physics-

ased feature engineering may outperform more generic approaches,
.g., CNN-based models both in terms of accuracy and train/prediction
ime. The improved accuracy, in particular for smaller datasets, is par-
ially due to the possibility of automatically introducing translational,
0-degree-rotational, and mirroring invariances through the engineered
eatures, but additionally, the reduction of the dimensionality of the
eature space is beneficial for the computational efficiency. However,
he feature engineering requires a certain amount of domain knowledge
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nd the overall effort is generally large.
Comparing such ML approaches to classical forward simulations,
e found that even predicting properties that usually require a large
umerical simulation effort can be learned and reliably predicted.
onetheless, generalizing the models such that they are applicable

or different domain sizes or different boundary conditions is one
f the current shortcomings and field of active research in various
ommunities.
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ppendix A. Explanation of the data generation by the simulation
odels

In the following, we introduce the used simulation models together
ith the underlying physical behavior. As the emphasis of this work

s not on simulations, please refer to the given references for further
etails.

.1. The Ising model – Statistical mechanics approach to ferro-magnetism

The Ising model is a theoretical model developed to describe ferro-
agnetism by W. Lenz in Lenz (1920) and solved for the 1D case by E.

sing in Ising (1925). In the 2D case, magnetic dipoles are located in the
enter points of a 𝑁×𝑁 grid. The Hamiltonian governs the total energy
f the system, which, in the case of periodic boundary conditions is
iven by:

= −
∑

⟨𝑖,𝑗⟩
𝐽𝑖𝑗𝜎𝑖𝜎𝑗 − 𝜇

∑

𝑖
ℎ𝑖𝜎𝑖 , (A.1)

where ⟨𝑖, 𝑗⟩ is the set of all the nearest neighbors of 𝑖, 𝑗, and 𝐽𝑖𝑗 is the
coupling force between the 𝑖th and 𝑗th magnetic dipole, 𝜎 ∈ {−1, 1}
is the sign of the magnetic dipole at a given site, 𝜇 is the magnetic
moment and ℎ is an external field apply to the lattice. In our case, we
simplify Eq. (A.1) by setting ℎ = 0 and 𝐽 = 1 for all magnetic dipoles

𝐻 = −𝐽
∑

⟨𝑖,𝑗⟩
𝜎𝑖𝜎𝑗 . (A.2)

The magnetization of the system, which is a quantitative measurement
of the excess dipole signs is given as,

⟨𝑀⟩ = 1
𝑁2

∑

𝑖
𝜎𝑖 . (A.3)

Simulation set up. To simulate this system, we use the Metropolis
algorithm. First, we randomly initialize the 𝑁 × 𝑁 dipoles, where we
chose 𝑁 = 64. Then, we randomly select one site 𝑠(𝑖, 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁]
and flip the corresponding magnetic dipole by changing its sign. We
then calculate the energy contribution of the new configuration. Due
to the periodic boundary conditions, the nearest neighbors of the first
and last magnetic dipole in the lattice are the 𝑁th and first magnetic
dipole, respectively. If the energy of the new configuration is smaller
than the previous one, we keep the new configuration. Alternatively,
if the energy of the new configuration is greater than the previous
configuration, we only keep it with a probability 𝑝 = 𝑒−𝛽𝐸 , 𝐸 = 𝐻𝑝−𝐻𝑛
nd 𝛽 = 1

𝑘𝑏𝑇
where 𝑇 is the temperature of the system and 𝑘𝑏 the

Boltzmann constant, set to 1 for simplicity. The critical temperature,
or Curie temperature (𝑇𝑐), is defined as,

𝑇𝑐 =
2𝐽

√
≈ 2∕ln(1 +

√

2) ≈ 2.269 . (A.4)
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𝑘𝐵 ln(1 + 2)
We repeat those steps until we reach a stopping criterion. An example
of such process is given in Fig. A.11. We choose 𝑁3 as a stopping
riterion for the simulation, where 𝑁 is the size of the lattice. The idea

behind this is that every site of the 𝑁×𝑁 lattice is visited approximately
𝑁 times so that the information has sufficient time to travel through
all the lattices.

A.2. The Cahn–Hilliard equation – Evolution of phase separation in binary
systems

In this work, we present a simple case of phase separation evolution
in a binary system, including the elasticity by a coupling approach
between a phase field model and an eigenstrain problem. The phase
field model, which is motivated by Cahn (1961) for spinodal decom-
position in binary alloys, is computed by solving the Cahn–Hilliard
equation. There, the evolution of the composition field 𝑐 is governed
by the minimization of the free energy,
𝜕𝑐
𝜕𝑡

= 𝑀𝑐∇2 𝛿𝐸
𝛿𝑐

, (A.5)

here 𝐸 is the free energy of the system and 𝑀𝑐 is a homogeneous and
isotropic interface mobility coefficient. The free energy density consists
of the potential energy density (𝛷bulk), gradient energy density (𝛷grad),
nd elastic energy density (𝛷el) and is given as,

= 𝛷bulk +𝛷grad +𝛷el, (A.6)

here 𝛷bulk = 𝑐0𝑐2(1 − 𝑐)2, 𝛷grad = 1
2𝑘c|∇𝑐|

2 and 𝛷el = 1
2𝝈 ∶ 𝜺el. The

two constants 𝑐0 and 𝑘𝑐 are the density scale and the gradient energy
density, respectively. 𝝈 is the stress tensor and 𝜺el is the elastic strain
tensor. The energy functional is then

𝐸 = ∫𝛺
(𝛷bulk+𝛷grad+𝛷el)d𝛺 = ∫𝛺

(𝑐0𝑐2(1−𝑐)2+
1
2
𝑘c|∇𝑐|

2+ 1
2
𝝈 ∶ 𝜺el)d𝛺 .

(A.7)

The eigenstrain problem is fulfilled through the mechanical equilib-
rium,

∇.𝝈 = 0, (A.8)

with the stress tensor 𝝈 = 𝑪 ∶ 𝜺el and the stiffness tensor 𝑪 . The elastic
strain tensor is defined as

𝜺el(𝒖, 𝑐) = 𝜺(𝒖) − 𝜺iel(𝑐) , (A.9)

where 𝜺 = 1
2 (∇𝒖 + (∇𝒖)𝑇 ) is the total strain tensor from displacement 𝒖

caused by lattice distortion and 𝜺iel is the non-elastic part that causes
the eigenstrain.
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Simulation set up. The coupling partial differential equations are im-
plemented and solved in FEniCS, an open-source Python library pack-
age (Langtangen & Logg, 2017). The width and height of the domain
are both 20 μm. The elastic stiffness constants for the isotropic material
model are 𝐶11 = 198GPa, 𝐶12 = 138GPa and 𝐶44 = 97GPa. The density
scale is 𝑐0 = 50 × 10−6 J μm−3 and the gradient energy density is 𝑘c =
10 J μm−1. Periodic boundary conditions are used.

We start with the initial values drawn from a uniform random
distribution from the range between 0 and 1. Before the two phases
are separated clearly into 0 and 1, there is a ‘‘mixing state’’ (also called
binodalor unstable state) where two phases are mixing (the values of
concentration 𝑐 are neither 0 nor 1 yet but in the range between 0
and 1) which cause the non-convexity of the energy, and this is where
we see a kink in the energy curve. This ‘‘mixing state’’ has a duration
that depends on how the parameters are chosen (the strong or weak
influence of the gradient term and/or the chemical term on the total
energy of the whole system). After the kink, the two phases become
clearly separate, where the values are either 0 or 1. It then gradually
lowers the energy by merging the phases. The similar behavior of the
energy curve and phenomenon can be referred to Kim and Lee (2021).

The simulation is divided into two parts: the first part, where the
energy decays rapidly, and the second part, where the energy decreases
only slowly. We run the simulation in the former with 2000 steps with
𝛥𝑡 values spaced evenly on a log scale (minimum and equal to 10−7 s at
the beginning, maximum and equal to roughly 10−4 s at the end); and
in the latter with 10,000 steps with constant 𝛥𝑡 = 10−4 s. The image
data are exported at every step of the first part and every 10th step of
the second part of the simulation. Therefore, there are roughly 60 000
images in the produced dataset.

Appendix B. Additional information and discussion of the ma-
chine learning models

B.1. Hyperparameter search for the SVR model with ‘‘physFeat2’’ features

In this work, the support vector regression (SVR) implementation of
scikit-learn (Pedregosa et al., 2011) is used, which is based on radial ba-
sis function kernels. It requires three hyperparameters: a regularization
term 𝐶, a kernel coefficient 𝛾, and the distance within the epsilon-
tube, 𝜖, where points are not penalized. To find the optimal values of
these hyperparameters, we used the tree-structured Parzen Estimator
(TPE) (Bergstra, Bardenet, Bengio, & Kégl, 2011), where the authors
also mention how crucial the tuning of SVR hyperparameters is for the
model performance. The ranges of SVR hyperparameters are provided
in Table B.3, where 𝐶 is the regularization term (box constraint), 𝛾
is the kernel coefficient and 𝜖 is the distance within the epsilon-tube
where points are not penalized. The TPE search is performed 1024
times, followed by hand-tuning. The model performance is evaluated
by performing 5-fold cross-validation on training data, consequently no
test data was seen throughout the hyperparameter search. The resultant
final parameters are provided in the last two columns in Table B.3.
The box constraint 𝐶 provides insight into the characteristic differences
between the two datasets: the larger 𝐶, the stronger the penalty for
not reaching the 𝜖-tube region. At the same time, a smaller 𝐶 leads
to a stronger regularization. Theoretically, it is impossible to exactly
predict the temperature of an image from the Ising dataset based
on only one snapshot of the whole simulation trajectory because the
temperature information is related to the probability of flipping the
sign of the spin of one of the elementary magnets. As a result, a non-
uniqueness could be observed: there may exist near-identical images at
different temperature values. The non-uniqueness is countered by the
regularization of the SVR model, which, therefore, has to be higher for
the Ising dataset as compared to the Cahn–Hilliard dataset.
12
Table B.3
PSD-SVR model hyperparameters: the columns ‘‘Range’’ and ‘‘logarithmic distribution’’
denote the parameter range/values that constrain the hyperparameter optimization, the
last two columns show the final parameter for the two datasets.

Hyperparameter Range Logarithmic distribution Ising Cahn–Hilliard

𝐶 (10−5 , 106) True 102 105

𝛾 Scale, auto False 1∕64 1∕64
𝜖 (0.1, 0.5) False 0.12 0.4

Fig. B.12. The first two principal components directly obtained by using the pixel
values of the input images as features for PCA.

B.2. Support vector regression with image embedding and PCA (CNN-PCA-
SVR)

The combination of a ResNet18 and the principal component anal-
ysis serves as a problem-agnostic way of computing features that can
then be used for support vector regression. Using only PCA turned out
to result in features (the principal components) that do not contain
sufficient information. The first two components are shown in Fig. B.12.
The strong localization for high-temperature data in the latent space is
caused by the strong randomness contained in the images. For lower
temperatures, this is different, but the radial symmetric distribution
mainly captures the randomness of the images and not the patterns with
different wavelengths. Therefore, a CNN was used to extract features
(i.e., the weights of the last hidden layer). Those were then used
as input for a PCA. The number of used principal components is a
hyperparameter that was chosen to keep the computational cost as low
as possible and at the same time to achieve an as good as possible
prediction performance. We start by taking a look at the variance
explained as a function of the number of principal components in
Fig. B.13. The plot shows that the variance explained quickly increases
for up to 15 principal components. This explains the rapid decrease in
the RMSE when the number of components is increased from 1 to 15
(the influence of the number of components for both datasets are shown
in the right figure of Fig. B.13).

In Fig. B.14, confusion matrices are given for changing the number
of principal components for both datasets.

Ising dataset. When there is only one principal component, the model
is not able to distinguish images from each other in the high and
low temperature zones. In the intermediate temperature zone, the
predictions are slightly better. However, the model can predict the
images around the critical temperature, 𝑇𝑐 , successfully by reducing the
information from 64 × 64 arrays to only one scalar value. Therefore,
if the objective is to predict the phase transformation, this would be a
highly efficient model. Already starting from two principal components,
the confusion matrix looks very similar to Fig. 8.

Cahn-Hilliard dataset. For this dataset, the behavior is different: about
25 components are required until a similar behavior as in Fig. B.14
is observed. For all numbers of components, the low-energy regime is
predicted significantly better due to the presence of clearly developed
patterns in the images. This can also be deducted from Fig. 6c: the low
energy zone is very extended in the latent space, which implies better
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Fig. B.13. Scree plot showing the cumulative explained variance (left) and the RMSE error (right), both as a function of the number of principal components.
Fig. B.14. Confusion matrices of both datasets with changing number of principal components that are used as features for the SVR model.
Fig. B.15. Prediction performance for different CNNs with random initialization of model weights (solid lines) and with pretrained weights (dashed lines) for different sizes of
training sets for (a) the Ising datasets and (b) the Cahn–Hilliard datasets.
predictions in this regime. However, there are component pairs that do
not follow the clockwise curve, leading to poor predictions for certain
images in the low energy zone. The mid and high energy zones are
very condensed in the latent space such that minor changes may lead
to strongly different predictions, making the model in this region more
error-prone.

B.3. Additional information for the multichannel CNN

Fourier transformations are often used in image processing, de-
composing an image into its sine and cosine components. After the
transformation, the image is represented in the Fourier or frequency
domain where only the magnitude of the Fourier transform is used.
13
For a square image of size 𝑁 ×𝑁 , the two-dimensional Discrete Fourier
Transform is given by:

𝐹 (𝑢, 𝑣) =
𝑁−1
∑

𝑖=0

𝑁−1
∑

𝑗=0
𝑓 (𝑎, 𝑏) exp−𝑖2𝜋∗(

𝑢𝑖
𝑁 + 𝑣𝑗

𝑁 ), (B.1)

where 𝑓 (𝑎, 𝑏) is the image in the spatial domain, and the exponential
term is the basis function corresponding to each point 𝐹 (𝑢, 𝑣) in the
Fourier space. The Discrete Wavelet Transform is given as,

𝑊 (𝑢, 𝑣) =
𝑁−1
∑

𝑎=0

𝑁−1
∑

𝑏=0
𝑓 (𝑎, 𝑏)𝜙(𝑢,𝑣)(𝑎, 𝑏), (B.2)

where 𝜙(𝑢,𝑣)(𝑎, 𝑏) is the basic wavelet function. The Fourier Trans-
form produces a complex number-valued output image which can be
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Fig. C.16. Confusion matrix of all models for training with different sizes of the Ising dataset. The vertical and horizontal data ranges (temperatures) for each sub-plot are 0..256.
The number inside the sub-plot represents the RMSE value (without brackets) and 𝑅2 score (with brackets).
displayed with two images, either with the real and imaginary part
or with magnitude and phase. In image processing, often only the
magnitude of the Fourier Transform is displayed, as it contains most of
the information of the geometric structure of the spatial domain image.
Basically, the frequency domain represents the rate of change in spatial
pixels, which is advantageous when the investigated problem relates to
the rate of change of pixels.

B.4. Additional information for the CNN-only approaches

Decreasing the dataset size to less than ≈10, 000 images results in a
more pronounced loss of prediction accuracy for the CNN approaches
as compared to the other models, cf. Fig. B.15. For the Ising dataset, the
14
training with both weight initialization methods shows similar behavior
(see Fig. B.15a). Difference occur only if less than 10% of the training
data was used. Then the weight initialization from ImageNet results
in higher RMSE values. For the Cahn–Hilliard dataset, a similar trend
(with more scatter) can be observed (see Fig. B.15b). For both datasets,
we find that training with random initialization of model weights gives
a better performance. This is most likely due to the differences in
the images used in the present study and the images of the ImageNet
dataset used to obtain the pretrained weights. These images require
different features than the ones learned by the pretrained weights, and
this is why we did not find any benefit from the transfer learning
approach. The small ResNet18 gives the best results for both datasets.
This is not entirely surprising as similar results have also been obtained
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Fig. C.17. Confusion matrix of all models for training with different sizes of the Cahn–Hilliard dataset. The vertical and horizontal data ranges (energies) for each sub-plot are
0..8000. The number inside the sub-plot represents the RMSE value (without brackets) and 𝑅2 score (with brackets).
by other researchers where shallow models can provide better results
compared to complex and deeper models (Bressem et al., 2020).

Appendix C. Visualization of confusion matrix from studying var-
ious percentages of dataset

Figs. C.16 and C.17 illustrate the confusion matrices for all models
and for different sizes of the training datasets.

Appendix D. Comparing our approaches with various regression
models from sklearn library package

The performance comparison of our approaches with various re-
gression models from the sklearn library package (Nearest Neighbors,
15
Linear SVM, RBF SVM, Decision Tree, Random Forest, Neural Net,
AdaBoost, and Naive Bayes) are shown in Figs. D.18 and D.19. It
is interesting to see that the performance of the Nearest Neighbors
method is quite good for the Cahn–Hilliard dataset (with RMSE and
𝑅2 score equal to 37 and 0.996), which is close to the performance of
physFeat1-PCR.

Appendix E. Computational fluid dynamics (CFD) dataset: addi-
tional information and our approaches performance

The CFD dataset is obtained based on large eddy simulations of
Kolmogorov flows, in which the image results in the strongly ‘‘curled’’
velocity field. The Reynolds numbers are chosen from the range of
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Fig. D.18. Visualization the RMSE of various approaches.
Fig. D.19. Visualization the 𝑅2 score of various approaches.
Fig. E.20. Microstructure and corresponding PSDs for the CFD dataset.
1..800. The velocity is obtained by solving the incompressible Navier–
Stokes equations. More details about the simulation and the simulation
16
software are described in Kochkov et al. (2021). Higher values of 𝑅
result in smaller structures, requiring a higher spatial resolution. This
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Fig. E.21. Confusion matrix of our approaches for the uniformed CFD dataset. The number inside the sub-plot represents the RMSE value (without brackets) and the 𝑅2 score
(with brackets).
partially explains why learning data for higher values of 𝑅 is more
difficult. The PSD features that are calculated from the images of this
dataset are visualized in Fig. E.20.

The application of our approaches in this work for the CFD datasets
is shown in Fig. E.21, respectively.
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