001025205 001__ 1025205
001025205 005__ 20250203103226.0
001025205 0247_ $$2doi$$a10.1093/neuonc/noad137.076
001025205 0247_ $$2ISSN$$a1522-8517
001025205 0247_ $$2ISSN$$a1523-5866
001025205 0247_ $$2WOS$$aWOS:001300535600077
001025205 037__ $$aFZJ-2024-02773
001025205 082__ $$a610
001025205 1001_ $$0P:(DE-Juel1)184842$$aFriedrich, M.$$b0$$eCorresponding author$$ufzj
001025205 1112_ $$a18th Meeting of the European Association of Neuro-Oncology$$cRotterdam$$d2023-09-21 - 2023-09-24$$wNetherlands
001025205 245__ $$aP01.02.A WHOLE-BRAIN STRUCTURAL CONNECTIVITY PREDICTS COGNITIVE OUTCOMES IN PRETREATED PATIENTS WITH WHO GRADE 3 OR 4 GLIOMAS
001025205 260__ $$c2023
001025205 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1714556749_3667
001025205 3367_ $$033$$2EndNote$$aConference Paper
001025205 3367_ $$2BibTeX$$aINPROCEEDINGS
001025205 3367_ $$2DRIVER$$aconferenceObject
001025205 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001025205 3367_ $$2ORCID$$aOTHER
001025205 520__ $$aBACKGROUNDGlioma patients frequently suffer from cognitive dysfunction potentially related to brain damage caused by tumor invasion or therapeutic intervention. We hypothesized that, as in other neurological disorders, the long-term outcome of cognitive functions in glioma patients critically depends on maintaining the structural connectivity of multiple interconnected networks.PATIENTS AND METHODSOne hundred and twenty-one glioma patients (median age, 52 years; median ECOG score, 1) with histomolecularly characterized CNS WHO grade 3 or 4 gliomas were investigated after a median time of 14 months (range, 1-214 months) following first-line therapy, including resection and chemoradiation with alkylating agents. Hybrid amino acid PET/MR imaging using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a brain-networks-based cortical parcellation into nodes, and advanced fiber tractography tools were used for constructing fiber-count-weighted connectivity matrices. Cognitive performance was measured by ten different tests concerning various cognitive domains. The connectivity matrices and the patients' test scores were applied to a machine learning-based model that identified critical fiber connections, cortical nodes, and involved networks for predicting cognitive performance in the assessed domains.RESULTSCompared to a matched cohort of healthy subjects, the cognitive scores of the patients were significantly lower in 9 of 10 cognitive tests. The most affected domains were executive function/concept-shifting (-72%), attention/processing speed (relative performance, -53%), followed by semantic word fluency (-25%), verbal working and semantic memory (-8 and -22%, respectively), and visual working memory (-11 to -20%). For each cognitive test, a subset of connections (median number, 254; range, 32-542) was identified whose fiber count sum showed a correlation with the actual scores in a linear model (median R2, 0.37; range, 0.16-0.44). Leave-one-out cross-validation confirmed the model's generalizability in 7 of 10 tests (median correlation coefficient for predicted compared to observed scores, 0.47; range 0.39-0.57). The distribution of critical cortical regions (node degree of ≥ 5 predictive edges), found in 90% of the cross-validation iterations, varied considerably between domains. These included predominantly left-sided cortical nodes of the visual, somatomotor, dorsal/ventral attention, and default mode networks. Highly critical nodes (degree of 15-20 predictive edges) included the default-mode network’s left temporal and bilateral posterior cingulate cortex.CONCLUSIONThese results suggest that the cognitive performance of pretreated glioma patients is strongly related to the structural connectivity within multiple brain networks and depends on the integrity of known network hubs.
001025205 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001025205 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025205 7001_ $$0P:(DE-Juel1)131627$$aStoffels, G.$$b1$$ufzj
001025205 7001_ $$0P:(DE-Juel1)141877$$aFilss, C. P.$$b2$$ufzj
001025205 7001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b3$$ufzj
001025205 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, F. M.$$b4$$ufzj
001025205 7001_ $$0P:(DE-HGF)0$$aWeiss Lucas, C.$$b5
001025205 7001_ $$0P:(DE-HGF)0$$aRuge, M. I.$$b6
001025205 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7$$ufzj
001025205 7001_ $$0P:(DE-Juel1)131675$$aCaspers, S.$$b8$$ufzj
001025205 7001_ $$0P:(DE-Juel1)131777$$aLangen, K. J.$$b9$$ufzj
001025205 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b10$$ufzj
001025205 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, N.$$b11$$ufzj
001025205 7001_ $$0P:(DE-Juel1)173675$$aKocher, M.$$b12$$ufzj
001025205 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noad137.076$$gVol. 25, no. Supplement_2, p. ii25 - ii26$$x1523-5866$$y2023
001025205 909CO $$ooai:juser.fz-juelich.de:1025205$$pVDB
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184842$$aForschungszentrum Jülich$$b0$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b1$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b2$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b4$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b8$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b11$$kFZJ
001025205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b12$$kFZJ
001025205 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001025205 9141_ $$y2024
001025205 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
001025205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
001025205 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2023-10-24
001025205 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001025205 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
001025205 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x2
001025205 980__ $$aabstract
001025205 980__ $$aVDB
001025205 980__ $$aI:(DE-Juel1)INM-1-20090406
001025205 980__ $$aI:(DE-Juel1)INM-3-20090406
001025205 980__ $$aI:(DE-Juel1)INM-4-20090406
001025205 980__ $$aUNRESTRICTED