001     1025205
005     20250203103226.0
024 7 _ |a 10.1093/neuonc/noad137.076
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a WOS:001300535600077
|2 WOS
037 _ _ |a FZJ-2024-02773
082 _ _ |a 610
100 1 _ |a Friedrich, M.
|0 P:(DE-Juel1)184842
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 18th Meeting of the European Association of Neuro-Oncology
|c Rotterdam
|d 2023-09-21 - 2023-09-24
|w Netherlands
245 _ _ |a P01.02.A WHOLE-BRAIN STRUCTURAL CONNECTIVITY PREDICTS COGNITIVE OUTCOMES IN PRETREATED PATIENTS WITH WHO GRADE 3 OR 4 GLIOMAS
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1714556749_3667
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a BACKGROUNDGlioma patients frequently suffer from cognitive dysfunction potentially related to brain damage caused by tumor invasion or therapeutic intervention. We hypothesized that, as in other neurological disorders, the long-term outcome of cognitive functions in glioma patients critically depends on maintaining the structural connectivity of multiple interconnected networks.PATIENTS AND METHODSOne hundred and twenty-one glioma patients (median age, 52 years; median ECOG score, 1) with histomolecularly characterized CNS WHO grade 3 or 4 gliomas were investigated after a median time of 14 months (range, 1-214 months) following first-line therapy, including resection and chemoradiation with alkylating agents. Hybrid amino acid PET/MR imaging using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a brain-networks-based cortical parcellation into nodes, and advanced fiber tractography tools were used for constructing fiber-count-weighted connectivity matrices. Cognitive performance was measured by ten different tests concerning various cognitive domains. The connectivity matrices and the patients' test scores were applied to a machine learning-based model that identified critical fiber connections, cortical nodes, and involved networks for predicting cognitive performance in the assessed domains.RESULTSCompared to a matched cohort of healthy subjects, the cognitive scores of the patients were significantly lower in 9 of 10 cognitive tests. The most affected domains were executive function/concept-shifting (-72%), attention/processing speed (relative performance, -53%), followed by semantic word fluency (-25%), verbal working and semantic memory (-8 and -22%, respectively), and visual working memory (-11 to -20%). For each cognitive test, a subset of connections (median number, 254; range, 32-542) was identified whose fiber count sum showed a correlation with the actual scores in a linear model (median R2, 0.37; range, 0.16-0.44). Leave-one-out cross-validation confirmed the model's generalizability in 7 of 10 tests (median correlation coefficient for predicted compared to observed scores, 0.47; range 0.39-0.57). The distribution of critical cortical regions (node degree of ≥ 5 predictive edges), found in 90% of the cross-validation iterations, varied considerably between domains. These included predominantly left-sided cortical nodes of the visual, somatomotor, dorsal/ventral attention, and default mode networks. Highly critical nodes (degree of 15-20 predictive edges) included the default-mode network’s left temporal and bilateral posterior cingulate cortex.CONCLUSIONThese results suggest that the cognitive performance of pretreated glioma patients is strongly related to the structural connectivity within multiple brain networks and depends on the integrity of known network hubs.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stoffels, G.
|0 P:(DE-Juel1)131627
|b 1
|u fzj
700 1 _ |a Filss, C. P.
|0 P:(DE-Juel1)141877
|b 2
|u fzj
700 1 _ |a Lohmann, P.
|0 P:(DE-Juel1)145110
|b 3
|u fzj
700 1 _ |a Mottaghy, F. M.
|0 P:(DE-Juel1)132318
|b 4
|u fzj
700 1 _ |a Weiss Lucas, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ruge, M. I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 7
|u fzj
700 1 _ |a Caspers, S.
|0 P:(DE-Juel1)131675
|b 8
|u fzj
700 1 _ |a Langen, K. J.
|0 P:(DE-Juel1)131777
|b 9
|u fzj
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 10
|u fzj
700 1 _ |a Galldiks, N.
|0 P:(DE-Juel1)143792
|b 11
|u fzj
700 1 _ |a Kocher, M.
|0 P:(DE-Juel1)173675
|b 12
|u fzj
773 _ _ |a 10.1093/neuonc/noad137.076
|0 PERI:(DE-600)2094060-9
|y 2023
|g Vol. 25, no. Supplement_2, p. ii25 - ii26
|x 1523-5866
909 C O |o oai:juser.fz-juelich.de:1025205
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)173675
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21