Conference Presentation (Invited) FZJ-2024-02778

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Training-to-Learn with Memristive Devices

 ;  ;

2023

Neuromorphic Materials, Devices, Circuits and Systems, ValènciaValència, Spain, 23 Jan 2023 - 25 Jan 20232023-01-232023-01-25 [10.29363/nanoge.neumatdecas.2023.013]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Memristive crossbar arrays are promising non-von Neumann computing technologies to enable real-world, onlinelearning in neural networks. However, their deployment to real-world learning problems is hindered by their non-linearitiesin conductance updates, variation during operation, fabrication mismatch and the realities of gradient descent training. In thiswork, we show that, with a phenomenological model of the device and bi-level optimization, it is possible to pre-train the neuralnetwork to be largely insensitive to such non-idealities on learning tasks. We demonstrate this effect using Model Agnostic Meta Learning (MAML) and a differentiable model of the conductance update on the Omniglot few-shot learning task. Since pre-training is a necessary procedure for any on-line learning scenario at the edge, our results may pave the way towards real-world applications of memristive devices without significant adaption overhead.


Contributing Institute(s):
  1. Neuromorphic Software Eco System (PGI-15)
Research Program(s):
  1. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)

Appears in the scientific report 2024
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Konferenzvorträge
Institutssammlungen > PGI > PGI-15
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2024-04-15, letzte Änderung am 2025-02-03


Externer link:
Volltext herunterladen
Volltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)