001025211 001__ 1025211
001025211 005__ 20250204113838.0
001025211 0247_ $$2doi$$a10.1016/j.jpowsour.2024.234091
001025211 0247_ $$2ISSN$$a0378-7753
001025211 0247_ $$2ISSN$$a1873-2755
001025211 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02779
001025211 0247_ $$2WOS$$aWOS:001175220500001
001025211 037__ $$aFZJ-2024-02779
001025211 082__ $$a620
001025211 1001_ $$0P:(DE-HGF)0$$aKriegler, Johannes$$b0$$eCorresponding author
001025211 245__ $$aA perspective on the design, manufacturing, and energy content of oxide all-solid-state batteries with scaffold-based composite cathodes
001025211 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001025211 3367_ $$2DRIVER$$aarticle
001025211 3367_ $$2DataCite$$aOutput Types/Journal article
001025211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714717551_29383
001025211 3367_ $$2BibTeX$$aARTICLE
001025211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025211 3367_ $$00$$2EndNote$$aJournal Article
001025211 520__ $$aOxide all-solid-state batteries (ASSBs) are researched as promising substitutes for conventional lithium-ion batteries (LIBs) due to enhanced safety and performance. However, challenges persist from the limited thermal processing window for sintering oxide composite cathodes, causing high electrode-electrolyte interfacial resistances. As an alternative, infiltrating porous oxide electrolyte scaffolds with cathode active materials has been demonstrated successfully on a laboratory scale. Nevertheless, the high densities of oxide solid electrolytes challenge high specific energies and energy densities in industry-relevant cell concepts. This article provides a perspective on the expected gravimetric and volumetric energy densities of all-solid-state batteries with composite cathodes fabricated by oxide electrolyte scaffold infiltration. Firstly, various manufacturing approaches for scaffold-based oxide all-solid-state batteries are reviewed, comparing the achievable cell design parameters. Subsequently, the energy contents attained in existing studies are calculated at electrode and stack levels. Finally, cell designs based on the two most prominent oxide solid electrolytes Li1.5Al0.5Ti1.5(PO4)3 (LATP) and Li7La3Zr2O12 (LLZO) are benchmarked concerning their potential energy content by model calculations and sensitivity analyses, revealing feasible levers for improvement. This work facilitates the commercial application of the scaffold approach by highlighting relevant research directions and designing cells with competitive energy content.
001025211 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025211 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025211 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b1
001025211 7001_ $$0P:(DE-HGF)0$$aLiang, Yunhao$$b2
001025211 7001_ $$0P:(DE-HGF)0$$aJaimez-Farnham, Elena$$b3
001025211 7001_ $$0P:(DE-HGF)0$$aZaeh, Michael F.$$b4
001025211 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2024.234091$$gVol. 596, p. 234091 -$$p234091 -$$tJournal of power sources$$v596$$x0378-7753$$y2024
001025211 8564_ $$uhttps://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.pdf$$yOpenAccess
001025211 8564_ $$uhttps://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.gif?subformat=icon$$xicon$$yOpenAccess
001025211 8564_ $$uhttps://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025211 8564_ $$uhttps://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025211 8564_ $$uhttps://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025211 909CO $$ooai:juser.fz-juelich.de:1025211$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b1$$kFZJ
001025211 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025211 9141_ $$y2024
001025211 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025211 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
001025211 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025211 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
001025211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001025211 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2024-12-06
001025211 920__ $$lyes
001025211 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001025211 9801_ $$aFullTexts
001025211 980__ $$ajournal
001025211 980__ $$aVDB
001025211 980__ $$aUNRESTRICTED
001025211 980__ $$aI:(DE-Juel1)IEK-1-20101013
001025211 981__ $$aI:(DE-Juel1)IMD-2-20101013