001     1025211
005     20250204113838.0
024 7 _ |a 10.1016/j.jpowsour.2024.234091
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02779
|2 datacite_doi
024 7 _ |a WOS:001175220500001
|2 WOS
037 _ _ |a FZJ-2024-02779
082 _ _ |a 620
100 1 _ |a Kriegler, Johannes
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A perspective on the design, manufacturing, and energy content of oxide all-solid-state batteries with scaffold-based composite cathodes
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714717551_29383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxide all-solid-state batteries (ASSBs) are researched as promising substitutes for conventional lithium-ion batteries (LIBs) due to enhanced safety and performance. However, challenges persist from the limited thermal processing window for sintering oxide composite cathodes, causing high electrode-electrolyte interfacial resistances. As an alternative, infiltrating porous oxide electrolyte scaffolds with cathode active materials has been demonstrated successfully on a laboratory scale. Nevertheless, the high densities of oxide solid electrolytes challenge high specific energies and energy densities in industry-relevant cell concepts. This article provides a perspective on the expected gravimetric and volumetric energy densities of all-solid-state batteries with composite cathodes fabricated by oxide electrolyte scaffold infiltration. Firstly, various manufacturing approaches for scaffold-based oxide all-solid-state batteries are reviewed, comparing the achievable cell design parameters. Subsequently, the energy contents attained in existing studies are calculated at electrode and stack levels. Finally, cell designs based on the two most prominent oxide solid electrolytes Li1.5Al0.5Ti1.5(PO4)3 (LATP) and Li7La3Zr2O12 (LLZO) are benchmarked concerning their potential energy content by model calculations and sensitivity analyses, revealing feasible levers for improvement. This work facilitates the commercial application of the scaffold approach by highlighting relevant research directions and designing cells with competitive energy content.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 1
700 1 _ |a Liang, Yunhao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jaimez-Farnham, Elena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zaeh, Michael F.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.jpowsour.2024.234091
|g Vol. 596, p. 234091 -
|0 PERI:(DE-600)1491915-1
|p 234091 -
|t Journal of power sources
|v 596
|y 2024
|x 0378-7753
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025211/files/1-s2.0-S0378775324000429-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025211
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145623
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21