001025219 001__ 1025219
001025219 005__ 20240708132709.0
001025219 0247_ $$2doi$$a10.1039/D2TA03676B
001025219 0247_ $$2ISSN$$a2050-7488
001025219 0247_ $$2ISSN$$a2050-7496
001025219 0247_ $$2WOS$$aWOS:000861716200001
001025219 037__ $$aFZJ-2024-02787
001025219 082__ $$a530
001025219 1001_ $$0P:(DE-HGF)0$$aMoy, Alexandra C.$$b0
001025219 245__ $$aThe effects of aluminum concentration on the microstructural and electrochemical properties of lithium lanthanum zirconium oxide
001025219 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2022
001025219 3367_ $$2DRIVER$$aarticle
001025219 3367_ $$2DataCite$$aOutput Types/Journal article
001025219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714732580_29383
001025219 3367_ $$2BibTeX$$aARTICLE
001025219 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025219 3367_ $$00$$2EndNote$$aJournal Article
001025219 520__ $$aCubic lithium lanthanum zirconium oxide (Li7−xAlxLa3Zr2O12, LLZO) garnet has gained attention as a promising next-generation electrolyte for lithium batteries due to its high ionic conductivity and chemical stability with lithium metal. The high conductivity can be achieved through doping over a range of aluminum concentrations. In this study, we hot-pressed samples to achieve <2% nominal porosity with aluminum concentrations from x = 0.25–0.55 mol to understand the effect of aluminum on microstructure and electrochemistry. It was observed that beyond the aluminum solubility limit (x = ∼0.40), resistive secondary phases formed at the grain boundaries. As a result, the percent grain boundary resistance increased from 17.6 to 41.2% for x = 0.25 and x = 0.55, respectively. Both the grain boundary and bulk activation energies remained relatively constant as the aluminum concentrations increased (∼0.44 eV and ∼0.39 eV, respectively). It was, therefore, surmised that the mobility term of the Nernst–Einstein equation was roughly independent of aluminum concentration and the major variable controlling bulk conductivity was the number of lithium charge carriers. As a result, as the aluminum concentration increased from x = 0.25 to x = 0.55 the bulk conductivity decreased from 0.56 to 0.15 mS cm−1. Following these trends of increasing grain boundary resistance and decreasing bulk conductivity with increasing aluminum concentration, x = 0.25 had the highest total conductivity (0.46 mS cm−1). We demonstrated that aluminum concentration has a significant effect on the microstructure and electrochemical properties of LLZO. We believe this work could help understand how to link processing, microstructure, and electrochemical properties to guide the manufacturing of LLZO for use in solid-state batteries.
001025219 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025219 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001025219 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025219 7001_ $$0P:(DE-Juel1)169991$$aHäuschen, Grit$$b1
001025219 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b2
001025219 7001_ $$0P:(DE-HGF)0$$aWolfenstine, Jeffrey B.$$b3
001025219 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4
001025219 7001_ $$0P:(DE-HGF)0$$aSakamoto, Jeff$$b5$$eCorresponding author
001025219 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D2TA03676B$$gVol. 10, no. 41, p. 21955 - 21972$$n41$$p21955 - 21972$$tJournal of materials chemistry / A$$v10$$x2050-7488$$y2022
001025219 909CO $$ooai:juser.fz-juelich.de:1025219$$pVDB
001025219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b2$$kFZJ
001025219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b4$$kFZJ
001025219 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025219 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001025219 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001025219 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001025219 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001025219 920__ $$lyes
001025219 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001025219 980__ $$ajournal
001025219 980__ $$aVDB
001025219 980__ $$aI:(DE-Juel1)IEK-1-20101013
001025219 980__ $$aUNRESTRICTED
001025219 981__ $$aI:(DE-Juel1)IMD-2-20101013