001     1025219
005     20240708132709.0
024 7 _ |a 10.1039/D2TA03676B
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000861716200001
|2 WOS
037 _ _ |a FZJ-2024-02787
082 _ _ |a 530
100 1 _ |a Moy, Alexandra C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The effects of aluminum concentration on the microstructural and electrochemical properties of lithium lanthanum zirconium oxide
260 _ _ |a London ˜[u.a.]œ
|c 2022
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714732580_29383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cubic lithium lanthanum zirconium oxide (Li7−xAlxLa3Zr2O12, LLZO) garnet has gained attention as a promising next-generation electrolyte for lithium batteries due to its high ionic conductivity and chemical stability with lithium metal. The high conductivity can be achieved through doping over a range of aluminum concentrations. In this study, we hot-pressed samples to achieve <2% nominal porosity with aluminum concentrations from x = 0.25–0.55 mol to understand the effect of aluminum on microstructure and electrochemistry. It was observed that beyond the aluminum solubility limit (x = ∼0.40), resistive secondary phases formed at the grain boundaries. As a result, the percent grain boundary resistance increased from 17.6 to 41.2% for x = 0.25 and x = 0.55, respectively. Both the grain boundary and bulk activation energies remained relatively constant as the aluminum concentrations increased (∼0.44 eV and ∼0.39 eV, respectively). It was, therefore, surmised that the mobility term of the Nernst–Einstein equation was roughly independent of aluminum concentration and the major variable controlling bulk conductivity was the number of lithium charge carriers. As a result, as the aluminum concentration increased from x = 0.25 to x = 0.55 the bulk conductivity decreased from 0.56 to 0.15 mS cm−1. Following these trends of increasing grain boundary resistance and decreasing bulk conductivity with increasing aluminum concentration, x = 0.25 had the highest total conductivity (0.46 mS cm−1). We demonstrated that aluminum concentration has a significant effect on the microstructure and electrochemical properties of LLZO. We believe this work could help understand how to link processing, microstructure, and electrochemical properties to guide the manufacturing of LLZO for use in solid-state batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Häuschen, Grit
|0 P:(DE-Juel1)169991
|b 1
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 2
700 1 _ |a Wolfenstine, Jeffrey B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 4
700 1 _ |a Sakamoto, Jeff
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1039/D2TA03676B
|g Vol. 10, no. 41, p. 21955 - 21972
|0 PERI:(DE-600)2702232-8
|n 41
|p 21955 - 21972
|t Journal of materials chemistry / A
|v 10
|y 2022
|x 2050-7488
909 C O |o oai:juser.fz-juelich.de:1025219
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145623
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2022
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21