001     1025235
005     20250204113839.0
024 7 _ |a 10.1007/s40747-024-01422-2
|2 doi
024 7 _ |a 2199-4536
|2 ISSN
024 7 _ |a 2198-6053
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02803
|2 datacite_doi
024 7 _ |a WOS:001220476300001
|2 WOS
037 _ _ |a FZJ-2024-02803
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 0
|e Corresponding author
245 _ _ |a A novel Voronoi-based convolutional neural network framework for pushing person detection in crowd videos
260 _ _ |a Switzerland
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714719160_25114
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Analyzing the microscopic dynamics of pushing behavior within crowds can offer valuable insights into crowd patternsand interactions. By identifying instances of pushing in crowd videos, a deeper understanding of when, where, and whysuch behavior occurs can be achieved. This knowledge is crucial to creating more effective crowd management strategies,optimizing crowd flow, and enhancing overall crowd experiences. However, manually identifying pushing behavior at themicroscopic level is challenging, and the existing automatic approaches cannot detect such microscopic behavior. Thus,this article introduces a novel automatic framework for identifying pushing in videos of crowds on a microscopic level.The framework comprises two main components: (i) feature extraction and (ii) video detection. In the feature extractioncomponent, a new Voronoi-based method is developed for determining the local regions associated with each person in theinput video. Subsequently, these regions are fed into EfficientNetV1B0 Convolutional Neural Network to extract the deepfeatures of each person over time. In the second component, a combination of a fully connected layer with a Sigmoid activationfunction is employed to analyze these deep features and annotate the individuals involved in pushing within the video. Theframework is trained and evaluated on a new dataset created using six real-world experiments, including their correspondingground truths. The experimental findings demonstrate that the proposed framework outperforms state-of-the-art approaches,as well as seven baseline methods used for comparative analysis.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)
|0 G:(BMBF)01DH16027
|c 01DH16027
|x 1
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Maree, Mohammed
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 3
773 _ _ |a 10.1007/s40747-024-01422-2
|0 PERI:(DE-600)2834740-7
|p 27
|t Complex & intelligent systems
|v 0
|y 2024
|x 2199-4536
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025235
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:50Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:50Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2024-04-10T15:36:50Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21