Home > Publications database > A novel Voronoi-based convolutional neural network framework for pushing person detection in crowd videos > print |
001 | 1025235 | ||
005 | 20250204113839.0 | ||
024 | 7 | _ | |a 10.1007/s40747-024-01422-2 |2 doi |
024 | 7 | _ | |a 2199-4536 |2 ISSN |
024 | 7 | _ | |a 2198-6053 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02803 |2 datacite_doi |
024 | 7 | _ | |a WOS:001220476300001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02803 |
041 | _ | _ | |a English |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Alia, Ahmed |0 P:(DE-Juel1)185971 |b 0 |e Corresponding author |
245 | _ | _ | |a A novel Voronoi-based convolutional neural network framework for pushing person detection in crowd videos |
260 | _ | _ | |a Switzerland |c 2024 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714719160_25114 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Analyzing the microscopic dynamics of pushing behavior within crowds can offer valuable insights into crowd patternsand interactions. By identifying instances of pushing in crowd videos, a deeper understanding of when, where, and whysuch behavior occurs can be achieved. This knowledge is crucial to creating more effective crowd management strategies,optimizing crowd flow, and enhancing overall crowd experiences. However, manually identifying pushing behavior at themicroscopic level is challenging, and the existing automatic approaches cannot detect such microscopic behavior. Thus,this article introduces a novel automatic framework for identifying pushing in videos of crowds on a microscopic level.The framework comprises two main components: (i) feature extraction and (ii) video detection. In the feature extractioncomponent, a new Voronoi-based method is developed for determining the local regions associated with each person in theinput video. Subsequently, these regions are fed into EfficientNetV1B0 Convolutional Neural Network to extract the deepfeatures of each person over time. In the second component, a combination of a fully connected layer with a Sigmoid activationfunction is employed to analyze these deep features and annotate the individuals involved in pushing within the video. Theframework is trained and evaluated on a new dataset created using six real-world experiments, including their correspondingground truths. The experimental findings demonstrate that the proposed framework outperforms state-of-the-art approaches,as well as seven baseline methods used for comparative analysis. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) |0 G:(BMBF)01DH16027 |c 01DH16027 |x 1 |
536 | _ | _ | |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Maree, Mohammed |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Chraibi, Mohcine |0 P:(DE-Juel1)132077 |b 2 |
700 | 1 | _ | |a Seyfried, Armin |0 P:(DE-Juel1)132266 |b 3 |
773 | _ | _ | |a 10.1007/s40747-024-01422-2 |0 PERI:(DE-600)2834740-7 |p 27 |t Complex & intelligent systems |v 0 |y 2024 |x 2199-4536 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025235/files/s40747-024-01422-2%20%281%29.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025235 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185971 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132077 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132266 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:36:50Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:36:50Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Double anonymous peer review |d 2024-04-10T15:36:50Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-7-20180321 |k IAS-7 |l Zivile Sicherheitsforschung |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-7-20180321 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|