001025358 001__ 1025358
001025358 005__ 20250203103237.0
001025358 0247_ $$2doi$$a10.1186/s12974-023-02822-w
001025358 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02821
001025358 0247_ $$2pmid$$a37296476
001025358 0247_ $$2WOS$$aWOS:001002907500001
001025358 037__ $$aFZJ-2024-02821
001025358 082__ $$a610
001025358 1001_ $$0P:(DE-HGF)0$$aKohle, Felix$$b0$$eCorresponding author
001025358 245__ $$aKinesin-5 inhibition improves neural regeneration in experimental autoimmune neuritis
001025358 260__ $$aLondon$$bBioMed Central$$c2023
001025358 3367_ $$2DRIVER$$aarticle
001025358 3367_ $$2DataCite$$aOutput Types/Journal article
001025358 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714557767_3667
001025358 3367_ $$2BibTeX$$aARTICLE
001025358 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025358 3367_ $$00$$2EndNote$$aJournal Article
001025358 520__ $$aAbstractBackground Autoimmune neuropathies can result in long-term disability and incomplete recovery, despite adequatefirst-line therapy. Kinesin-5 inhibition was shown to accelerate neurite outgrowth in different preclinical studies.Here, we evaluated the potential neuro-regenerative effects of the small molecule kinesin-5 inhibitor monastrol in arodent model of acute autoimmune neuropathies, experimental autoimmune neuritis.Methods Experimental autoimmune neuritis was induced in Lewis rats with the neurogenic P2-peptide. At thebeginning of the recovery phase at day 18, the animals were treated with 1 mg/kg monastrol or sham and observeduntil day 30 post-immunisation. Electrophysiological and histological analysis for markers of inflammation and remyelinationof the sciatic nerve were performed. Neuromuscular junctions of the tibialis anterior muscles were analysedfor reinnervation. We further treated human induced pluripotent stem cells-derived secondary motor neurons withmonastrol in different concentrations and performed a neurite outgrowth assay.Results Treatment with monastrol enhanced functional and histological recovery in experimental autoimmuneneuritis. Motor nerve conduction velocity at day 30 in the treated animals was comparable to pre-neuritis values.Monastrol-treated animals showed partially reinnervated or intact neuromuscular junctions. A significant and dosedependentaccelerated neurite outgrowth was observed after kinesin-5 inhibition as a possible mode of action.Conclusion Pharmacological kinesin-5 inhibition improves the functional outcome in experimental autoimmuneneuritis through accelerated motor neurite outgrowth and histological recovery. This approach could be of interest toimprove the outcome of autoimmune neuropathy patients.Keywords Experimental autoimmune neuritis, Guillain–Barré syndrome, Autoimmune neuropathy, Eg5, Monastrol,Neuroregeneration
001025358 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001025358 536__ $$0G:(GEPRIS)491454339$$aDFG project 491454339 - Open-Access-Publikationskosten / 2022 – 2024 / Universität zu Köln und Uniklinik Köln (491454339)$$c491454339$$x1
001025358 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025358 7001_ $$0P:(DE-HGF)0$$aAckfeld, Robin$$b1
001025358 7001_ $$0P:(DE-HGF)0$$aHommen, Franziska$$b2
001025358 7001_ $$0P:(DE-HGF)0$$aKlein, Ines$$b3
001025358 7001_ $$0P:(DE-HGF)0$$aSvačina, Martin K. R.$$b4
001025358 7001_ $$aSchneider, Christian$$b5
001025358 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b6
001025358 7001_ $$0P:(DE-HGF)0$$aBarham, Mohammed$$b7
001025358 7001_ $$0P:(DE-HGF)0$$aVilchez, David$$b8
001025358 7001_ $$0P:(DE-HGF)0$$aLehmann, Helmar C.$$b9
001025358 773__ $$0PERI:(DE-600)2156455-3$$a10.1186/s12974-023-02822-w$$gVol. 20, no. 1, p. 139$$n1$$p139$$tJournal of neuroinflammation$$v20$$x1742-2094$$y2023
001025358 8564_ $$uhttps://juser.fz-juelich.de/record/1025358/files/PDF.pdf$$yOpenAccess
001025358 8564_ $$uhttps://juser.fz-juelich.de/record/1025358/files/PDF.gif?subformat=icon$$xicon$$yOpenAccess
001025358 8564_ $$uhttps://juser.fz-juelich.de/record/1025358/files/PDF.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025358 8564_ $$uhttps://juser.fz-juelich.de/record/1025358/files/PDF.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025358 8564_ $$uhttps://juser.fz-juelich.de/record/1025358/files/PDF.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025358 909CO $$ooai:juser.fz-juelich.de:1025358$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
001025358 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001025358 9141_ $$y2024
001025358 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROINFLAMM : 2022$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:09:06Z
001025358 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:09:06Z
001025358 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001025358 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025358 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025358 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROINFLAMM : 2022$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001025358 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:09:06Z
001025358 920__ $$lyes
001025358 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001025358 980__ $$ajournal
001025358 980__ $$aVDB
001025358 980__ $$aUNRESTRICTED
001025358 980__ $$aI:(DE-Juel1)INM-3-20090406
001025358 9801_ $$aFullTexts