001025370 001__ 1025370
001025370 005__ 20250204113840.0
001025370 0247_ $$2doi$$a10.1002/pssa.202300403
001025370 0247_ $$2ISSN$$a1862-6300
001025370 0247_ $$2ISSN$$a0031-8965
001025370 0247_ $$2ISSN$$a1521-396X
001025370 0247_ $$2ISSN$$a(1970-2004)
001025370 0247_ $$2ISSN$$a1862-6319
001025370 0247_ $$2ISSN$$a(2005-2017)
001025370 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02833
001025370 0247_ $$2WOS$$aWOS:001116460800001
001025370 037__ $$aFZJ-2024-02833
001025370 082__ $$a530
001025370 1001_ $$0P:(DE-HGF)0$$aChen, Ching-Jung$$b0$$eCorresponding author
001025370 245__ $$aInvestigation of the Large Variability of HfO 2 ‐Based Resistive Random Access Memory Devices with a Small Current Compliance by a Kinetic Monte Carlo Model
001025370 260__ $$aWeinheim$$bWiley-VCH$$c2024
001025370 3367_ $$2DRIVER$$aarticle
001025370 3367_ $$2DataCite$$aOutput Types/Journal article
001025370 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732261984_1328
001025370 3367_ $$2BibTeX$$aARTICLE
001025370 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025370 3367_ $$00$$2EndNote$$aJournal Article
001025370 520__ $$aWhile scaling down resistive random access memory devices can bring many benefits, it also introduces uncertainties during operation. One example is the wide distribution of the resistances in the low-resistance state (LRS) when the device is connected by a small current compliance () in the microampere range. During the operation under such small , it is believed that the stochastic migration of oxygen vacancies in the oxide layer plays an important role for the variability. To this regard, the model where oxygen vacancies are treated as point defects and the kinetic Monte Carlo method is applied for the stochastic migration of vacancies is extended. The relation between the macroscopic observations in measurements and the microscopic vacancy distribution are discussed. It turns out that three representative configurations are sufficient to describe the vacancy distribution in the LRS. The large spread of the resistance seen in the cycle-to-cycle statistics is then due to the change from one of the configuration to the other. The origin for the change between configurations is discussed in terms of the anisotropic zero-field energy barrier of the diffusion of vacancies.
001025370 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025370 536__ $$0G:(GEPRIS)277688301$$aSFB 917 B08 - Theorie und Modellierung des valenzwechselbasierenden resistiven Schaltens (B08) (277688301)$$c277688301$$x1
001025370 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025370 7001_ $$0P:(DE-Juel1)130926$$aRushchanskii, Konstantin Z.$$b1$$eCorresponding author
001025370 7001_ $$0P:(DE-HGF)0$$aJungemann, Christoph$$b2
001025370 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.202300403$$gp. 2300403$$n22$$p2300403$$tPhysica status solidi / A$$v221$$x1862-6300$$y2024
001025370 8564_ $$uhttps://juser.fz-juelich.de/record/1025370/files/Physica%20Status%20Solidi%20a%20-%202023%20-%20Chen%20-%20Investigation%20of%20the%20Large%20Variability%20of%20HfO2%E2%80%90Based%20Resistive%20Random%20Access.pdf$$yOpenAccess
001025370 909CO $$ooai:juser.fz-juelich.de:1025370$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025370 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Chair of Electromagnetic Theory, RWTH Aachen University, 52056 Aachen, Germany$$b0
001025370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130926$$aForschungszentrum Jülich$$b1$$kFZJ
001025370 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Chair of Electromagnetic Theory, RWTH Aachen University, 52056 Aachen, Germany$$b2
001025370 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025370 9141_ $$y2024
001025370 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001025370 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
001025370 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001025370 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025370 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001025370 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-05$$wger
001025370 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2022$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001025370 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001025370 920__ $$lyes
001025370 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025370 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001025370 980__ $$ajournal
001025370 980__ $$aVDB
001025370 980__ $$aUNRESTRICTED
001025370 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025370 980__ $$aI:(DE-Juel1)IAS-1-20090406
001025370 9801_ $$aFullTexts