001     1025374
005     20250414120456.0
024 7 _ |a 10.1103/PhysRevApplied.20.044056
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02837
|2 datacite_doi
024 7 _ |a WOS:001446050200001
|2 WOS
037 _ _ |a FZJ-2024-02837
082 _ _ |a 530
100 1 _ |a Zhang, Lishu
|0 P:(DE-Juel1)194695
|b 0
|e Corresponding author
245 _ _ |a Current-driven magnetoresistance in van der Waals spin-filter antiferromagnetic tunnel junctions with Mn Bi 2 Te 4
260 _ _ |a College Park, Md. [u.a.]
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714730919_29383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The field of two-dimensional magnetic materials has paved the way for the development of spintronics and nanodevices with other functionalities. Utilizing antiferromagnetic materials, in addition to layered van der Waals (vdW) ferromagnetic materials, has garnered significant interest. In this work, we present a theoretical investigation of the behavior of MnBi2Te4 devices based on the nonequilibrium Green’s function method. Our results show that the current-voltage (I-V) characteristics can be influenced significantly by controlling the length of the device and bias voltage and thus allow us to manipulate the tunneling magnetoresistance (TMR) with an external bias voltage. This can be further influenced by the presence of the boron nitride layer, which shows significantly enhanced TMR by selectively suppressing specific spin channels for different magnetic configurations. By exploiting this mechanism, the observed TMR value reaches up to 3690%, which can be attributed to the spin-polarized transmission channel and the projected local density of states. Our findings on the influence of structural and magnetic configurations on the spin-polarized transport properties and TMR ratios give the potential implementation of antiferromagnetic vdW layered materials in ultrathin spintronics.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Li, Hui
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jiang, Yanyan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Zishen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Tao
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ghosh, Sumit
|0 P:(DE-Juel1)180392
|b 5
|u fzj
773 _ _ |a 10.1103/PhysRevApplied.20.044056
|g Vol. 20, no. 4, p. 044056
|0 PERI:(DE-600)2760310-6
|n 4
|p 044056
|t Physical review applied
|v 20
|y 2023
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025374/files/PhysRevApplied.20.044056.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025374/files/PhysRevApplied.20.044056.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025374/files/PhysRevApplied.20.044056.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025374/files/PhysRevApplied.20.044056.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025374/files/PhysRevApplied.20.044056.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025374
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194695
910 1 _ |a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, National University of Singapore, Singapore 117542, Singapore
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180392
910 1 _ |a Institute of Physics, Johannes Gutenberg-University Mainz, Mainz 55128, Germany
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)180392
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21