001     1025381
005     20250203103239.0
024 7 _ |a 10.3390/molecules28196866
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02844
|2 datacite_doi
024 7 _ |a 37836709
|2 pmid
024 7 _ |a WOS:001094712300001
|2 WOS
037 _ _ |a FZJ-2024-02844
082 _ _ |a 540
100 1 _ |a Guo, Junnan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Electron Transport Properties of Graphene/WS2 Van Der Waals Heterojunctions
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714558527_354
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional theory combined with the nonequilibrium Green’s function technique has been used to calculate the transport properties of graphene/WS2 heterojunctions. It is observed that the formation of heterojunctions does not lead to the opening of the Dirac point of graphene. Instead, the respective band structures of both graphene and WS2 are preserved. Therefore, the heterojunction follows a unique Ohm’s law at low bias voltages, despite the presence of a certain rotation angle between the two surfaces within the heterojunction. The transmission spectra, the density of states, and the transmission eigenstate are used to investigate the origin and mechanism of unique linear I–V characteristics. This study provides a theoretical framework for designing mixed-dimensional heterojunction nanoelectronic devices.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dai, Xinyue
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Zhang, Lishu
|0 P:(DE-Juel1)194695
|b 2
|u fzj
700 1 _ |a Li, Hui
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.3390/molecules28196866
|g Vol. 28, no. 19, p. 6866 -
|0 PERI:(DE-600)2008644-1
|n 19
|p 6866 -
|t Molecules
|v 28
|y 2023
|x 1420-3049
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025381/files/molecules-28-06866.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025381/files/molecules-28-06866.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025381/files/molecules-28-06866.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025381/files/molecules-28-06866.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025381/files/molecules-28-06866.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025381
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)194695
910 1 _ |a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOLECULES : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:01:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:01:17Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:01:17Z
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21