001025383 001__ 1025383
001025383 005__ 20250203103457.0
001025383 0247_ $$2doi$$a10.1021/acs.nanolett.3c01709
001025383 0247_ $$2ISSN$$a1530-6984
001025383 0247_ $$2ISSN$$a1530-6992
001025383 0247_ $$2pmid$$a37466639
001025383 0247_ $$2WOS$$aWOS:001032199000001
001025383 037__ $$aFZJ-2024-02846
001025383 082__ $$a660
001025383 1001_ $$0P:(DE-HGF)0$$aKammerbauer, Fabian$$b0
001025383 245__ $$aControlling the Interlayer Dzyaloshinskii–Moriya Interaction by Electrical Currents
001025383 260__ $$aWashington, DC$$bACS Publ.$$c2023
001025383 3367_ $$2DRIVER$$aarticle
001025383 3367_ $$2DataCite$$aOutput Types/Journal article
001025383 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714575317_354
001025383 3367_ $$2BibTeX$$aARTICLE
001025383 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025383 3367_ $$00$$2EndNote$$aJournal Article
001025383 520__ $$aThe recently discovered interlayer Dzyaloshinskii–Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.
001025383 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025383 536__ $$0G:(GEPRIS)290319996$$aDFG project 290319996 - Spin+Bahn-Wechselwirkung: Orbitronik und Spin-Bahn Effekte (A01) (290319996)$$c290319996$$x1
001025383 536__ $$0G:(GEPRIS)290396061$$aDFG project 290396061 - Spin+Strom: Drehimpulstransport durch Magnonen, Spins und Orbits (B02) (290396061)$$c290396061$$x2
001025383 536__ $$0G:(GEPRIS)403502522$$aDFG project 403502522 - Thermisch aktivierte Skyrmionen: von der individuellen zur kollektiven Dynamik (403502522)$$c403502522$$x3
001025383 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x4
001025383 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)$$c437337265$$x5
001025383 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x6
001025383 536__ $$0G:(GEPRIS)448880005$$aDFG project 448880005 - Ab-Initio Entdeckung topologischer magnetischer Hochtemperaturmaterialien (448880005)$$c448880005$$x7
001025383 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025383 7001_ $$0P:(DE-HGF)0$$aChoi, Won-Young$$b1
001025383 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b2$$ufzj
001025383 7001_ $$0P:(DE-HGF)0$$aLee, Kyujoon$$b3
001025383 7001_ $$0P:(DE-HGF)0$$aFrömter, Robert$$b4
001025383 7001_ $$0P:(DE-HGF)0$$aHan, Dong-Soo$$b5
001025383 7001_ $$0P:(DE-HGF)0$$aLavrijsen, Reinoud$$b6
001025383 7001_ $$0P:(DE-HGF)0$$aSwagten, Henk J. M.$$b7
001025383 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b8$$ufzj
001025383 7001_ $$0P:(DE-HGF)0$$aKläui, Mathias$$b9$$eCorresponding author
001025383 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.3c01709$$gVol. 23, no. 15, p. 7070 - 7075$$n15$$p7070 - 7075$$tNano letters$$v23$$x1530-6984$$y2023
001025383 8564_ $$uhttps://juser.fz-juelich.de/record/1025383/files/kammerbauer-et-al-2023-controlling-the-interlayer-dzyaloshinskii-moriya-interaction-by-electrical-currents.pdf$$yRestricted
001025383 8564_ $$uhttps://juser.fz-juelich.de/record/1025383/files/kammerbauer-et-al-2023-controlling-the-interlayer-dzyaloshinskii-moriya-interaction-by-electrical-currents.gif?subformat=icon$$xicon$$yRestricted
001025383 8564_ $$uhttps://juser.fz-juelich.de/record/1025383/files/kammerbauer-et-al-2023-controlling-the-interlayer-dzyaloshinskii-moriya-interaction-by-electrical-currents.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001025383 8564_ $$uhttps://juser.fz-juelich.de/record/1025383/files/kammerbauer-et-al-2023-controlling-the-interlayer-dzyaloshinskii-moriya-interaction-by-electrical-currents.jpg?subformat=icon-180$$xicon-180$$yRestricted
001025383 8564_ $$uhttps://juser.fz-juelich.de/record/1025383/files/kammerbauer-et-al-2023-controlling-the-interlayer-dzyaloshinskii-moriya-interaction-by-electrical-currents.jpg?subformat=icon-640$$xicon-640$$yRestricted
001025383 909CO $$ooai:juser.fz-juelich.de:1025383$$pec_fundedresources$$pVDB$$popenaire
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany$$b0
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany$$b1
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Spintronics, Korea Institute of Science and Technology, 34141 Seoul, Republic of Korea$$b1
001025383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b2$$kFZJ
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130643$$a Institute of Physics, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany$$b2
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Division of Display and Semiconductor Physics, Korea University, 30019 Sejong, Republic of Korea$$b3
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany$$b4
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Spintronics, Korea Institute of Science and Technology, 34141 Seoul, Republic of Korea$$b5
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics, Institute for Photonic Integration, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands$$b6
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Applied Physics, Institute for Photonic Integration, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands$$b7
001025383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b8$$kFZJ
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130848$$a Institute of Physics, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany$$b8
001025383 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany$$b9
001025383 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025383 9141_ $$y2024
001025383 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001025383 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2023-10-24
001025383 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025383 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001025383 980__ $$ajournal
001025383 980__ $$aVDB
001025383 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025383 980__ $$aI:(DE-Juel1)IAS-1-20090406
001025383 980__ $$aUNRESTRICTED