001025384 001__ 1025384
001025384 005__ 20250204113840.0
001025384 0247_ $$2doi$$a10.1103/PhysRevB.109.064417
001025384 0247_ $$2ISSN$$a2469-9950
001025384 0247_ $$2ISSN$$a2469-9977
001025384 0247_ $$2ISSN$$a0163-1829
001025384 0247_ $$2ISSN$$a0556-2805
001025384 0247_ $$2ISSN$$a1095-3795
001025384 0247_ $$2ISSN$$a1098-0121
001025384 0247_ $$2ISSN$$a1538-4489
001025384 0247_ $$2ISSN$$a1550-235X
001025384 0247_ $$2ISSN$$a2469-9969
001025384 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02847
001025384 0247_ $$2WOS$$aWOS:001198676400004
001025384 037__ $$aFZJ-2024-02847
001025384 082__ $$a530
001025384 1001_ $$0P:(DE-Juel1)181098$$aPaul, Souvik$$b0$$eCorresponding author
001025384 245__ $$aTuning magnetic interactions of Co and 4 d transition-metal atomic bilayers on Re(0001) via interface engineering
001025384 260__ $$aWoodbury, NY$$bInst.$$c2024
001025384 3367_ $$2DRIVER$$aarticle
001025384 3367_ $$2DataCite$$aOutput Types/Journal article
001025384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714730961_30347
001025384 3367_ $$2BibTeX$$aARTICLE
001025384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025384 3367_ $$00$$2EndNote$$aJournal Article
001025384 520__ $$aEmploying ab initio density functional theory (DFT), we performed a systematic investigation of the electronic structure and the magnetic properties of atomic bilayers composed of a 4d transition-metal layer (Rh, Pd, and Ru) and a Co layer on the Re(0001) surface. Our DFT calculations reveal the influence of the bilayer composition and their stacking sequence on the magnetic ground state and magnetic interactions. We obtain the magnetic interactions by mapping the total energies onto an effective spin Hamiltonian which contains the exchange interaction and the Dzyaloshinskii-Moriya interaction (DMI), as well as the magnetocrystalline anisotropy energy (MAE). We observe noticeable changes in bilayer hybridization due to variation in bilayer composition and overlayer symmetry, leading to significant variation in magnetic interactions. In all considered systems, the effective exchange interaction is ferromagnetic, however, the value varies by up to a factor of 5. The effective DMI constant exhibits variation in sign over the films considered, favoring either right- (clockwise) or left-handed (counterclockwise) cycloidal spin spirals. The value of the DMI changes by up to a factor of 27 among the films. For most of the systems, the MAE favors an out-of-plane easy magnetization axis; however, for hcp-Co/Rh and hcp-Co/Ru bilayers on Re(0001), it prefers an in-plane magnetization axis. The magnitude of the MAE varies from a small value of about 0.1 meV/Co atom up to about 2 meV/Co atom for Co/Pd bilayers. The spin spiral energy dispersion curve rises quite quickly close to the ferromagnetic state for films in which the Co layer is adjacent to the vacuum indicating a large effective exchange constant which stabilizes a ferromagnetic ground state in Co/4d bilayers on Re(0001). The energy dispersion curve becomes flatter for films with a Co layer that is sandwiched between a 4d overlayer and the Re(0001) surface. In this case, the exchange constant is much reduced and the ground state is determined by the competition among the exchange interaction, favoring the FM state, the DMI, which favors cycloidal spin spirals, and the MAE, which disfavors spin spirals over the FM state. As a result, hcp-Rh/Co/Re(0001) shows a spin spiral ground state driven by DMI with a period of 13 nm, while the other films exhibit a ferromagnetic ground state. The spin spiral energy dispersion of hcp-Rh/Co/Re(0001) indicates that isolated skyrmions can be stabilized in the ferromagnetic background with an applied magnetic field. Our results further suggest that isolated skyrmions could be realized even in the absence of an external field in fcc-Rh/Co/Re(0001), hcp-Pd/Co/Re(0001), fcc-Pd/Co/Re(0001), and fcc-Ru/Co/Re(0001). A total energy comparison reveals that these five promising films are energetically strongly preferred over films with a Co overlayer. This makes ultrathin films composed of a 4d transition-metal overlayer on Co/Re(0001) promising candidates for the search of isolated skyrmions.
001025384 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025384 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
001025384 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025384 7001_ $$0P:(DE-HGF)0$$aHeinze, Stefan$$b1
001025384 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.109.064417$$gVol. 109, no. 6, p. 064417$$n6$$p064417$$tPhysical review / B$$v109$$x2469-9950$$y2024
001025384 8564_ $$uhttps://juser.fz-juelich.de/record/1025384/files/PhysRevB.109.064417.pdf$$yOpenAccess
001025384 8564_ $$uhttps://juser.fz-juelich.de/record/1025384/files/PhysRevB.109.064417.gif?subformat=icon$$xicon$$yOpenAccess
001025384 8564_ $$uhttps://juser.fz-juelich.de/record/1025384/files/PhysRevB.109.064417.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025384 8564_ $$uhttps://juser.fz-juelich.de/record/1025384/files/PhysRevB.109.064417.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025384 8564_ $$uhttps://juser.fz-juelich.de/record/1025384/files/PhysRevB.109.064417.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025384 909CO $$ooai:juser.fz-juelich.de:1025384$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181098$$aForschungszentrum Jülich$$b0$$kFZJ
001025384 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)181098$$a School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India$$b0
001025384 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a nstitute of Theoretical Physics and Astrophysics, Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 15, 24098 Kiel, Germany$$b1
001025384 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Kiel Nano, Surface, and Interface Science (KiNSIS), University of Kiel, Kiel, Germany$$b1
001025384 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025384 9141_ $$y2024
001025384 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001025384 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001025384 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001025384 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001025384 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2024-12-10
001025384 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001025384 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025384 980__ $$ajournal
001025384 980__ $$aVDB
001025384 980__ $$aUNRESTRICTED
001025384 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025384 9801_ $$aFullTexts