001025387 001__ 1025387
001025387 005__ 20250204113840.0
001025387 0247_ $$2doi$$a10.1038/s41567-023-02358-z
001025387 0247_ $$2ISSN$$a1745-2473
001025387 0247_ $$2ISSN$$a1745-2481
001025387 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02850
001025387 0247_ $$2pmid$$a38638455
001025387 0247_ $$2WOS$$aWOS:001148715500004
001025387 037__ $$aFZJ-2024-02850
001025387 082__ $$a530
001025387 1001_ $$0P:(DE-HGF)0$$aHassan, Mariam$$b0$$eCorresponding author
001025387 245__ $$aDipolar skyrmions and antiskyrmions of arbitrary topological charge at room temperature
001025387 260__ $$aBasingstoke$$bNature Publishing Group$$c2024
001025387 3367_ $$2DRIVER$$aarticle
001025387 3367_ $$2DataCite$$aOutput Types/Journal article
001025387 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714726346_25114
001025387 3367_ $$2BibTeX$$aARTICLE
001025387 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025387 3367_ $$00$$2EndNote$$aJournal Article
001025387 520__ $$aMagnetic skyrmions are localized, stable topological magnetic textures that can move and interact with each other like ordinary particles when an external stimulus is applied. The efficient control of the motion of spin textures using spin-polarized currents opened an opportunity for skyrmionic devices such as racetrack memory and neuromorphic or reservoir computing. The coexistence of skyrmions with high topological charge in the same system promises further possibilities for efficient technological applications. In this work, we directly observe dipolar skyrmions and antiskyrmions with arbitrary topological charge in Co/Ni multilayers at room temperature. We explore the dipolar-stabilized spin objects with topological charges of up to 10 and characterize their nucleation process, their energy dependence on the topological charge and the effect of the material parameters on their stability. Furthermore, our micromagnetic simulations demonstrate spin-transfer-induced motion of these spin objects, which is important for their potential device application.
001025387 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025387 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
001025387 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025387 7001_ $$0P:(DE-HGF)0$$aKoraltan, Sabri$$b1$$eCorresponding author
001025387 7001_ $$0P:(DE-HGF)0$$aUllrich, Aladin$$b2
001025387 7001_ $$0P:(DE-HGF)0$$aBruckner, Florian$$b3
001025387 7001_ $$0P:(DE-HGF)0$$aSerha, Rostyslav O.$$b4
001025387 7001_ $$0P:(DE-HGF)0$$aLevchenko, Khrystyna V.$$b5
001025387 7001_ $$0P:(DE-HGF)0$$aVarvaro, Gaspare$$b6
001025387 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai S.$$b7
001025387 7001_ $$0P:(DE-HGF)0$$aHeigl, Michael$$b8
001025387 7001_ $$0P:(DE-HGF)0$$aAbert, Claas$$b9
001025387 7001_ $$0P:(DE-HGF)0$$aSuess, Dieter$$b10
001025387 7001_ $$0P:(DE-HGF)0$$aAlbrecht, Manfred$$b11
001025387 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-023-02358-z$$p615–622$$tNature physics$$v20$$x1745-2473$$y2024
001025387 8564_ $$uhttps://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.pdf$$yOpenAccess
001025387 8564_ $$uhttps://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.gif?subformat=icon$$xicon$$yOpenAccess
001025387 8564_ $$uhttps://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025387 8564_ $$uhttps://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025387 8564_ $$uhttps://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025387 909CO $$ooai:juser.fz-juelich.de:1025387$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, University of Augsburg, Augsburg, Germany$$b0
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria$$b1
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Vienna Doctoral School in Physics, University of Vienna, Vienna, Austria$$b1
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Research Platform MMM Mathematics – Magnetism – Materials, University of Vienna, Vienna, Austria$$b1
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a nstitute of Physics, University of Augsburg, Augsburg, Germany$$b2
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria$$b3
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Vienna Doctoral School in Physics, University of Vienna, Vienna, Austria$$b4
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna, Vienna, Austria$$b4
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna, Vienna, Austria$$b5
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ISM – CNR, nM2-Lab, Monterotondo Scalo, Roma, Italy$$b6
001025387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b7$$kFZJ
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, University of Augsburg, Augsburg, Germany$$b8
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria$$b9
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Research Platform MMM Mathematics – Magnetism – Materials, University of Vienna, Vienna, Austria$$b9
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria$$b10
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Research Platform MMM Mathematics – Magnetism – Materials, University of Vienna, Vienna, Austria$$b10
001025387 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, University of Augsburg, Augsburg, Germany$$b11
001025387 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025387 9141_ $$y2024
001025387 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025387 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001025387 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-25$$wger
001025387 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025387 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001025387 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001025387 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2022$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001025387 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2022$$d2024-12-11
001025387 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025387 980__ $$ajournal
001025387 980__ $$aVDB
001025387 980__ $$aUNRESTRICTED
001025387 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025387 9801_ $$aFullTexts