001     1025387
005     20250204113840.0
024 7 _ |a 10.1038/s41567-023-02358-z
|2 doi
024 7 _ |a 1745-2473
|2 ISSN
024 7 _ |a 1745-2481
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02850
|2 datacite_doi
024 7 _ |a 38638455
|2 pmid
024 7 _ |a WOS:001148715500004
|2 WOS
037 _ _ |a FZJ-2024-02850
082 _ _ |a 530
100 1 _ |a Hassan, Mariam
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Dipolar skyrmions and antiskyrmions of arbitrary topological charge at room temperature
260 _ _ |a Basingstoke
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714726346_25114
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic skyrmions are localized, stable topological magnetic textures that can move and interact with each other like ordinary particles when an external stimulus is applied. The efficient control of the motion of spin textures using spin-polarized currents opened an opportunity for skyrmionic devices such as racetrack memory and neuromorphic or reservoir computing. The coexistence of skyrmions with high topological charge in the same system promises further possibilities for efficient technological applications. In this work, we directly observe dipolar skyrmions and antiskyrmions with arbitrary topological charge in Co/Ni multilayers at room temperature. We explore the dipolar-stabilized spin objects with topological charges of up to 10 and characterize their nucleation process, their energy dependence on the topological charge and the effect of the material parameters on their stability. Furthermore, our micromagnetic simulations demonstrate spin-transfer-induced motion of these spin objects, which is important for their potential device application.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Koraltan, Sabri
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Ullrich, Aladin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bruckner, Florian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Serha, Rostyslav O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Levchenko, Khrystyna V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Varvaro, Gaspare
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kiselev, Nikolai S.
|0 P:(DE-Juel1)145390
|b 7
700 1 _ |a Heigl, Michael
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Abert, Claas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Suess, Dieter
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Albrecht, Manfred
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/s41567-023-02358-z
|0 PERI:(DE-600)2206346-8
|p 615–622
|t Nature physics
|v 20
|y 2024
|x 1745-2473
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025387/files/s41567-023-02358-z.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025387
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Institute of Physics, University of Augsburg, Augsburg, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Vienna Doctoral School in Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Research Platform MMM Mathematics – Magnetism – Materials, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a nstitute of Physics, University of Augsburg, Augsburg, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Vienna Doctoral School in Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a ISM – CNR, nM2-Lab, Monterotondo Scalo, Roma, Italy
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145390
910 1 _ |a Institute of Physics, University of Augsburg, Augsburg, Germany
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Research Platform MMM Mathematics – Magnetism – Materials, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Physics of Functional Materials, Faculty of Physics, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Research Platform MMM Mathematics – Magnetism – Materials, University of Vienna, Vienna, Austria
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Institute of Physics, University of Augsburg, Augsburg, Germany
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHYS : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT PHYS : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21