001025388 001__ 1025388
001025388 005__ 20250204113840.0
001025388 0247_ $$2doi$$a10.1029/2023MS003624
001025388 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02851
001025388 0247_ $$2WOS$$aWOS:001202967100001
001025388 037__ $$aFZJ-2024-02851
001025388 041__ $$aEnglish
001025388 082__ $$a550
001025388 1001_ $$0P:(DE-HGF)0$$aKruse, C. G.$$b0$$eCorresponding author
001025388 245__ $$aRecreating Observed Convection‐Generated Gravity Waves From Weather Radar Observations via a Neural Network and a Dynamical Atmospheric Model
001025388 260__ $$aFort Collins, Colo.$$b[Verlag nicht ermittelbar]$$c2024
001025388 3367_ $$2DRIVER$$aarticle
001025388 3367_ $$2DataCite$$aOutput Types/Journal article
001025388 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714724362_25114
001025388 3367_ $$2BibTeX$$aARTICLE
001025388 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025388 3367_ $$00$$2EndNote$$aJournal Article
001025388 520__ $$aConvection-generated gravity waves (CGWs) transport momentum and energy, and this momentum is a dominant driver of global features of Earth's atmosphere's general circulation (e.g., the quasi-biennial oscillation, the pole-to-pole mesospheric circulation). As CGWs are not generally resolved by global weather and climate models, their effects on the circulation need to be parameterized. However, quality observations of GWs are spatiotemporally sparse, limiting understanding and preventing constraints on parameterizations. Convection-permitting or -resolving simulations do generate CGWs, but validation is not possible as these simulations cannot reproduce the CGW-forcing convection at correct times, locations, and intensities. Here, realistic convective diabatic heating, learned from full-physics convection-permitting Weather Research and Forecasting simulations, is predicted from weather radar observations using neural networks and a previously developed look-up table. These heating rates are then used to force an idealized GW-resolving dynamical model. Simulated CGWs forced in this way closely resembled those observed by the Atmospheric InfraRed Sounder in the upper stratosphere. CGW drag in these validated simulations extends 100s of kilometers away from the convective sources, highlighting errors in current gravity wave drag parameterizations due to the use of the ubiquitous single-column approximation. Such validatable simulations have significant potential to be used to further basic understanding of CGWs, improve their parameterizations physically, and provide more restrictive constraints on tuning with confidence.
001025388 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001025388 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025388 7001_ $$0P:(DE-HGF)0$$aAlexander, M. J.$$b1
001025388 7001_ $$00000-0002-4892-9615$$aBramberger, M.$$b2
001025388 7001_ $$0P:(DE-HGF)0$$aChattopadhyay, A.$$b3
001025388 7001_ $$00000-0001-9425-8085$$aHassanzadeh, P.$$b4
001025388 7001_ $$00009-0004-9901-7204$$aGreen, B.$$b5
001025388 7001_ $$0P:(DE-HGF)0$$aGrimsdell, A.$$b6
001025388 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b7
001025388 773__ $$0PERI:(DE-600)2462132-8$$a10.1029/2023MS003624$$gVol. 16, no. 4, p. e2023MS003624$$n4$$pe2023MS003624$$tJournal of advances in modeling earth systems$$v16$$x1942-2466$$y2024
001025388 8564_ $$uhttps://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.pdf$$yOpenAccess
001025388 8564_ $$uhttps://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.gif?subformat=icon$$xicon$$yOpenAccess
001025388 8564_ $$uhttps://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025388 8564_ $$uhttps://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025388 8564_ $$uhttps://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025388 909CO $$ooai:juser.fz-juelich.de:1025388$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b7$$kFZJ
001025388 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001025388 9141_ $$y2024
001025388 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025388 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025388 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025388 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001025388 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025388 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001025388 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ADV MODEL EARTH SY : 2022$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:07:35Z
001025388 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:07:35Z
001025388 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:07:35Z
001025388 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001025388 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ ADV MODEL EARTH SY : 2022$$d2024-12-18
001025388 920__ $$lyes
001025388 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001025388 980__ $$ajournal
001025388 980__ $$aVDB
001025388 980__ $$aUNRESTRICTED
001025388 980__ $$aI:(DE-Juel1)JSC-20090406
001025388 9801_ $$aFullTexts