001     1025388
005     20250204113840.0
024 7 _ |a 10.1029/2023MS003624
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02851
|2 datacite_doi
024 7 _ |a WOS:001202967100001
|2 WOS
037 _ _ |a FZJ-2024-02851
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Kruse, C. G.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Recreating Observed Convection‐Generated Gravity Waves From Weather Radar Observations via a Neural Network and a Dynamical Atmospheric Model
260 _ _ |a Fort Collins, Colo.
|c 2024
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714724362_25114
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Convection-generated gravity waves (CGWs) transport momentum and energy, and this momentum is a dominant driver of global features of Earth's atmosphere's general circulation (e.g., the quasi-biennial oscillation, the pole-to-pole mesospheric circulation). As CGWs are not generally resolved by global weather and climate models, their effects on the circulation need to be parameterized. However, quality observations of GWs are spatiotemporally sparse, limiting understanding and preventing constraints on parameterizations. Convection-permitting or -resolving simulations do generate CGWs, but validation is not possible as these simulations cannot reproduce the CGW-forcing convection at correct times, locations, and intensities. Here, realistic convective diabatic heating, learned from full-physics convection-permitting Weather Research and Forecasting simulations, is predicted from weather radar observations using neural networks and a previously developed look-up table. These heating rates are then used to force an idealized GW-resolving dynamical model. Simulated CGWs forced in this way closely resembled those observed by the Atmospheric InfraRed Sounder in the upper stratosphere. CGW drag in these validated simulations extends 100s of kilometers away from the convective sources, highlighting errors in current gravity wave drag parameterizations due to the use of the ubiquitous single-column approximation. Such validatable simulations have significant potential to be used to further basic understanding of CGWs, improve their parameterizations physically, and provide more restrictive constraints on tuning with confidence.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Alexander, M. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bramberger, M.
|0 0000-0002-4892-9615
|b 2
700 1 _ |a Chattopadhyay, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hassanzadeh, P.
|0 0000-0001-9425-8085
|b 4
700 1 _ |a Green, B.
|0 0009-0004-9901-7204
|b 5
700 1 _ |a Grimsdell, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 7
773 _ _ |a 10.1029/2023MS003624
|g Vol. 16, no. 4, p. e2023MS003624
|0 PERI:(DE-600)2462132-8
|n 4
|p e2023MS003624
|t Journal of advances in modeling earth systems
|v 16
|y 2024
|x 1942-2466
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025388
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ADV MODEL EARTH SY : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:07:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:07:35Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:07:35Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J ADV MODEL EARTH SY : 2022
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21