001     1025388
005     20260122232242.0
024 7 _ |2 doi
|a 10.1029/2023MS003624
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-02851
024 7 _ |2 WOS
|a WOS:001202967100001
037 _ _ |a FZJ-2024-02851
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Kruse, C. G.
|b 0
|e Corresponding author
245 _ _ |a Recreating Observed Convection‐Generated Gravity Waves From Weather Radar Observations via a Neural Network and a Dynamical Atmospheric Model
260 _ _ |a Fort Collins, Colo.
|b [Verlag nicht ermittelbar]
|c 2024
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1714724362_25114
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Convection-generated gravity waves (CGWs) transport momentum and energy, and this momentum is a dominant driver of global features of Earth's atmosphere's general circulation (e.g., the quasi-biennial oscillation, the pole-to-pole mesospheric circulation). As CGWs are not generally resolved by global weather and climate models, their effects on the circulation need to be parameterized. However, quality observations of GWs are spatiotemporally sparse, limiting understanding and preventing constraints on parameterizations. Convection-permitting or -resolving simulations do generate CGWs, but validation is not possible as these simulations cannot reproduce the CGW-forcing convection at correct times, locations, and intensities. Here, realistic convective diabatic heating, learned from full-physics convection-permitting Weather Research and Forecasting simulations, is predicted from weather radar observations using neural networks and a previously developed look-up table. These heating rates are then used to force an idealized GW-resolving dynamical model. Simulated CGWs forced in this way closely resembled those observed by the Atmospheric InfraRed Sounder in the upper stratosphere. CGW drag in these validated simulations extends 100s of kilometers away from the convective sources, highlighting errors in current gravity wave drag parameterizations due to the use of the ubiquitous single-column approximation. Such validatable simulations have significant potential to be used to further basic understanding of CGWs, improve their parameterizations physically, and provide more restrictive constraints on tuning with confidence.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Alexander, M. J.
|b 1
700 1 _ |0 0000-0002-4892-9615
|a Bramberger, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Chattopadhyay, A.
|b 3
700 1 _ |0 0000-0001-9425-8085
|a Hassanzadeh, P.
|b 4
700 1 _ |0 0009-0004-9901-7204
|a Green, B.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Grimsdell, A.
|b 6
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, L.
|b 7
773 _ _ |0 PERI:(DE-600)2462132-8
|a 10.1029/2023MS003624
|g Vol. 16, no. 4, p. e2023MS003624
|n 4
|p e2023MS003624
|t Journal of advances in modeling earth systems
|v 16
|x 1942-2466
|y 2024
856 4 _ |u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1025388/files/J%20Adv%20Model%20Earth%20Syst%20-%202024%20-%20Kruse%20-%20Recreating%20Observed%20Convection%E2%80%90Generated%20Gravity%20Waves%20From%20Weather%20Radar.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1025388
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-08-23
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J ADV MODEL EARTH SY : 2022
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2024-08-08T17:07:35Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2024-08-08T17:07:35Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:07:35Z
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b J ADV MODEL EARTH SY : 2022
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21