
Refactoring data pipelines
using containerization and
continuous integration

Problem Motivation

Pipeline architecture

Refactoring: Benefits

ReferencesSummary & Outlook
• Refactored data pipelines used in production for diverse data

sources (mainly dense time series data)
• Containerization and CI/CD automation permits scalable

operation of pipeline system and simplifies modifications
• Planned extension to generated Prometheus based monitoring

system for data consistency checks

Benjamin Bruns *†

*Institute for Advanced Simulation 8, Forschungszentrum Jülich, 52425 Jülich, Germany
† Institute of Bio- and Geosciences 2, Forschungszentrum Jülich, 52425 Jülich, Germany

• Idea to provide a flexible import and transformation pipeline as a
template for all imports into existing backend (Bayeos-Server)

• Separation of responsibilities: distinct agents for import,
transformation and aggregation processes

• Usage of containerization for data pipeline to ensure easy adaption,
execution and traceability of pipeline processes

[1] Schmidt, F., et. al.: A Distributed Information System For Managing
Phenotyping Mass Data, Referate der 33. GIL-Jahrestagung, Potsdam, 2013

[2] Bruns, B.., et. al.: Entwicklung eines serviceorientierten Informationssystems für
 Phänotypisierungsmessungen im Freiland, Geisenheim, 2015 Referate der 36.
 GIL-Jahrestagung, Osnabrück, 2016
[3] BayEOS-Server, Bayreuth Center for Ecology and Environmental Research,

Universität Bayreuth, Code (LGPL): https://github.com/BayCEER/bayeos-server

• Several processes (sensors, monitoring, automated analysis)
generate different streams ([1], [2]) of time series (like) data

• Differences in data retrieval, data transformation and data
aggregation

• Error-prone usage of standalone scripts for import
into central data platform (BayEOS-Server, [3])

• Introduction of “Mediator Gateway” to trigger data pipeline for
each data source

• Mediator gateway runs as a container and caches (raw and
transformed) data for bulk import to central data platform

• Different options / interfaces provided by Mediator Gateway to
trigger data transfer:

• (scheduled) push
• scheduled pull
• sample number limit (push via datalog)

• Each pipeline step runs inside a distinct container:
• Retrieval (push / pull): REST, (PL/pg)SQL, pg_cron
• Transformation: (PL/pg)SQL, INSERT trigger
• Aggregation: (PL/pg)SQL
• Bulk import: (PL/pg)SQL, postgres_fdw

• Gitlab project templates (& documentation) for each pipeline step
• Repository includes CI/CD specification for automated building,

tagging and deployment (to Gitlab registry) of containers

Retrieval Container

Raw data import

Transform Container

Normalize data

Aggregation Container

Aggregate data

Mediator Gateway

Import Container

Bulk import to
BayEOS-Server

Containerized data pipeline

BayEOS-Server
(PostgreSQL)

Mediator Gateway
(PostgreSQL)

Logger

Sensor Boards

Measurement
Station
Measurement

Station

Improved system architecture: Mediator Gateway

• Maintenance of pipeline (steps) is significantly simplified
• Inherent relationship (tag) between container and code repo
• Rollout and load balancing simplified by CI/CD automation and

containerization
• More robust operation (restart policies) and simplified

monitoring (Prometheus) due to containerization
• Fast bulk import (Mediator Gateway) speeds up data import
• Data harmonization on production side imposed by data schema

of Mediator Gateway (simplified version of OGC O&M standard)

Container monitoring
Automated build of a container

Unified schema (simplified) of Mediator Gateway

https://github.com/BayCEER/bayeos-server

	Folie 1

