
Refactoring data pipelines 
using containerization and 
continuous integration

Problem Motivation

Pipeline architecture

Refactoring: Benefits 

ReferencesSummary & Outlook
• Refactored data pipelines used in production for diverse data 

sources (mainly dense time series data)
• Containerization and CI/CD automation permits scalable 

operation of pipeline system and simplifies modifications
• Planned extension to generated Prometheus based monitoring 

system for data consistency checks
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• Idea to provide a flexible import and transformation pipeline as a 
template for all imports into existing backend (Bayeos-Server)

• Separation of responsibilities: distinct agents for import, 
transformation and aggregation processes

• Usage of containerization for data pipeline to ensure easy adaption, 
execution and traceability of pipeline processes
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• Several processes (sensors, monitoring, automated analysis) 
generate different streams ([1], [2]) of time series (like) data

• Differences in data retrieval, data transformation and data 
aggregation 

• Error-prone usage of standalone scripts for import
into central data platform (BayEOS-Server, [3])

• Introduction of “Mediator Gateway” to trigger data pipeline for 
each data source

• Mediator gateway runs as a container and caches (raw and 
transformed) data for bulk import to central data platform

• Different options / interfaces provided by Mediator Gateway to 
trigger data transfer:

• (scheduled) push
• scheduled pull
• sample number limit (push via datalog)

• Each pipeline step runs inside a distinct container:
• Retrieval (push / pull): REST, (PL/pg)SQL, pg_cron
• Transformation: (PL/pg)SQL, INSERT trigger
• Aggregation: (PL/pg)SQL
• Bulk import: (PL/pg)SQL, postgres_fdw

• Gitlab project templates (& documentation) for each pipeline step
• Repository includes CI/CD specification for automated building, 

tagging and deployment (to Gitlab registry) of containers
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Improved system architecture: Mediator Gateway

• Maintenance of pipeline (steps) is significantly simplified
• Inherent relationship (tag) between container and code repo
• Rollout and load balancing simplified by CI/CD automation and 

containerization
• More robust operation (restart policies) and simplified 

monitoring (Prometheus) due to containerization
• Fast bulk import (Mediator Gateway) speeds up data import
• Data harmonization on production side imposed by data schema 

of Mediator Gateway (simplified version of OGC O&M standard)

Container monitoring
Automated build of a container

Unified schema (simplified) of Mediator Gateway

https://github.com/BayCEER/bayeos-server

	Folie 1

