001025412 001__ 1025412
001025412 005__ 20250203215418.0
001025412 0247_ $$2doi$$a10.1021/acs.jpcb.3c00063
001025412 0247_ $$2ISSN$$a1520-6106
001025412 0247_ $$2ISSN$$a1520-5207
001025412 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02871
001025412 0247_ $$2pmid$$a37127845
001025412 0247_ $$2WOS$$aWOS:001004706500001
001025412 037__ $$aFZJ-2024-02871
001025412 082__ $$a530
001025412 1001_ $$0P:(DE-Juel1)178946$$aKav, Batuhan$$b0
001025412 245__ $$aMeasuring pico-Newton Forces with Lipid Anchors as Force Sensors in Molecular Dynamics Simulations
001025412 260__ $$aWashington, DC$$bAmerical Chemical Society$$c2023
001025412 3367_ $$2DRIVER$$aarticle
001025412 3367_ $$2DataCite$$aOutput Types/Journal article
001025412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738571316_3774
001025412 3367_ $$2BibTeX$$aARTICLE
001025412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025412 3367_ $$00$$2EndNote$$aJournal Article
001025412 520__ $$aBinding forces between biomolecules are ubiquitous in nature but sometimes as weak as a few pico-Newtons (pN). In many cases, the binding partners are attached to biomembranes with the help of a lipid anchor. One important example are glycolipids that promote membrane adhesion through weak carbohydrate–carbohydrate binding between adjacent membranes. Here, we use molecular dynamics (MD) simulations to quantify the forces generated by bonds involving membrane-anchored molecules. We introduce a method in which the protrusion of the lipid anchors from the membrane acts as the force sensor. Our results with two different glycolipids reveal binding forces of up to 20 pN and corroborate the recent notion that carbohydrate–carbohydrate interactions are generic rather than specific.
001025412 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001025412 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025412 7001_ $$00000-0002-0911-5328$$aWeikl, Thomas R.$$b1$$eCorresponding author
001025412 7001_ $$00000-0001-9769-2194$$aSchneck, Emanuel$$b2$$eCorresponding author
001025412 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.3c00063$$gVol. 127, no. 18, p. 4081 - 4089$$n18$$p4081 - 4089$$tThe journal of physical chemistry / B$$v127$$x1520-6106$$y2023
001025412 8564_ $$uhttps://juser.fz-juelich.de/record/1025412/files/kav-et-al-2023-measuring-pico-newton-forces-with-lipid-anchors-as-force-sensors-in-molecular-dynamics-simulations.pdf$$yOpenAccess
001025412 8564_ $$uhttps://juser.fz-juelich.de/record/1025412/files/kav-et-al-2023-measuring-pico-newton-forces-with-lipid-anchors-as-force-sensors-in-molecular-dynamics-simulations.gif?subformat=icon$$xicon$$yOpenAccess
001025412 8564_ $$uhttps://juser.fz-juelich.de/record/1025412/files/kav-et-al-2023-measuring-pico-newton-forces-with-lipid-anchors-as-force-sensors-in-molecular-dynamics-simulations.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025412 8564_ $$uhttps://juser.fz-juelich.de/record/1025412/files/kav-et-al-2023-measuring-pico-newton-forces-with-lipid-anchors-as-force-sensors-in-molecular-dynamics-simulations.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025412 8564_ $$uhttps://juser.fz-juelich.de/record/1025412/files/kav-et-al-2023-measuring-pico-newton-forces-with-lipid-anchors-as-force-sensors-in-molecular-dynamics-simulations.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025412 909CO $$ooai:juser.fz-juelich.de:1025412$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
001025412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178946$$aForschungszentrum Jülich$$b0$$kFZJ
001025412 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001025412 9141_ $$y2024
001025412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025412 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2022$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001025412 920__ $$lyes
001025412 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001025412 980__ $$ajournal
001025412 980__ $$aVDB
001025412 980__ $$aI:(DE-Juel1)IBI-7-20200312
001025412 980__ $$aUNRESTRICTED
001025412 9801_ $$aFullTexts