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Clustering of flagellated microswimmers such as sperm is often mediated
by hydrodynamic interactions between them. To better understand the inter-
action of microswimmers in viscoelastic fluids, we perform two-dimensional
simulations of two swimming sheets, using a viscoelastic version of the
smoothed dissipative particle dynamics method that implements the Old-
royd-B fluid model. Elasticity of sheets (stiff versus soft) defines two
qualitatively different regimes of clustering, where stiff sheets exhibit a
much more robust clustering than soft sheets. A formed doublet of soft
sheets generally swims faster than a single swimmer, while a pair of two
stiff sheets normally shows no speed enhancement after clustering. A pair
of two identical swimmers is stable for most conditions, while differences
in the beating amplitudes and/or frequencies between the two sheets can
destroy the doublet stability. Clustering of two distinct swimmers is most
stable at Deborah numbers of De = τω≈ 1 (τ is the relaxation time of a visco-
elastic fluid and ω is the beating frequency), in agreement with experimental
observations. Therefore, the clustering of two swimmers depends non-
monotonically on De. Our results suggest that the cluster stability is likely
a dominant factor which determines the cluster size of collectively moving
flagellated swimmers.
1. Introduction
Synchronization and clustering of dynamic appendages, such as flagella and
cilia, is a common phenomenon in many biological systems. Sperm cells interact
when they are in the close proximity of each other to form pairs, triplets and
even large clusters [1–6]. Chlamydomonas algae exhibit an in-phase synchroniza-
tion of their two beating flagella in order to swim straight and fast [7–10].
Helical flagella of Escherichia coli bacteria self-organize into a bundle to swim
straight, but can be disentangled to reorient [11–13]. In the respiratory
system, an ensemble of cilia can beat and synchronize to generate flows
which transport mucus [14,15]. In all these examples, the synchronization
and clustering of swimmers and their appendages are critical for a proper
functioning of different biological systems.

Theoretical analyses, experiments and simulations have confirmed that the
synchronization of external appendages and clustering of swimmers can be
achieved purely through hydrodynamic interactions between them [2,16–19].
In the limit of zero Reynolds number (i.e. no inertia), the kinematic reversibility
of Stokes flow would prevent the synchronization of inextensible symmetric
flagella [20,21]. However, this symmetry can be broken by various factors,
such as inertia [22–24], flagella elasticity [25–27], fluid elasticity [28,29] and
waveform asymmetry [20,30]. Therefore, for most biological systems, hydro-
dynamic interactions nearly always facilitate the synchronization of active
external appendages and interactions between swimmers.
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Synchronization and clustering of microswimmers
within a fluid-like environment are also instrumental for
the collective behaviour of microorganisms and artificial
swimmers, which has recently attracted a lot of scientific
attention directed at the understanding of relevant physical
mechanisms and potential biomedical applications [31–33].
Clustering of microswimmers is dominated by short-range
(within a swimmer size) interactions between them, since
inter-swimmer distances within a cluster are generally small
[3,34]. For instance, swimming sperms can form multicellular
clusters due to hydrodynamic interactions between them
[3–5]. Interestingly, the clustering of sperms is enhanced in
non-Newtonian viscoelastic fluids in comparison to sperm
behaviour in Newtonian viscous fluids, which likely arises
from the effect of fluid elasticity [5,35]. A further important
question is the stability of sperm clusters with respect to
differences in the swimming behaviour of different sperm
cells, as experimental observations [5] clearly show that
sperm clusters are very dynamic with a frequent interchange
in their cell content. Therefore, a possible reason affecting the
clustering of sperm cells and the stability of sperm clusters is
an intrinsic variability in the swimming properties of sperm
cells, including differences in their flagellum length and
beating patterns [6].

To better understand clustering of sperm-like swimmers,
we perform a systematic investigation of the clustering of two
finite-length sheets with and without a head. Our primary
focus is on the clustering properties of two swimmers in
viscoelastic fluids represented by the Oldroyd-B fluid
model. We employ a viscoelastic version of the smoothed dis-
sipative particle dynamics (SDPD) method [36,37] to model
fluid-like environment and an actuated elastic sheet model
in two-dimensional (2D) simulations. We find that the elas-
ticity of sheets (stiff versus soft) results in two qualitatively
distinct regimes of clustering, where stiff sheets generally
show a much more robust clustering than soft sheets. Fluid
elasticity can enhance as well as reduce the interaction
strength, depending on sheet properties, inter-sheet distance
and fluid viscoelastic characteristics. Even though a formed
doublet of two identical swimmers is generally stable for
most conditions, the stability can be destroyed through rela-
tively small differences in swimmer properties, such as the
beating amplitude and frequency. The swimmer clustering
results are corroborated well by inter-sheet force measure-
ments for various conditions, and contribute toward better
understanding of the collective behaviour of flagellated
microswimmers such as sperm.

Our numerical study primarily focuses on the generic
effects of sheet elasticity and fluid viscoelasticity for the pro-
pulsion of flagellated beating microswimmers. In this respect,
sperm cells are best for comparison, since they propel in a
similar way to our swimmer model and, therefore, hydro-
dynamic interaction mechanisms are likely similar [3,6,38].
Another limitation of our study is that we consider only 2D
motion of microswimmers, while the propulsion of biological
microorganisms is generally three-dimensional (3D). For the
example of sperm cells, we expect that in 3D the interaction
strength should be weaker than in 2D due to an additional
degree of freedom. However, it is worth mentioning that a
2D representation may not be appropriate for some flagel-
lated microswimmers, such as E. coli bacteria which have
helical flagella rotated by internal motors [11,39]. In this
example, not only is the propulsion strategy different from
that for beating flagella, but also the generated 3D flow
field is important for swimmer interactions with each other
and encountered surfaces [40–42].

This article is organized as follows. Section 2 provides all
necessary details about the employed simulation method and
swimmer modelling. Section 3.1 presents swimming proper-
ties of a single sheet, while §3.2 discusses the dynamic
attraction and clustering process of two swimmers. In §3.3,
we study changes in the swimming properties of a clustered
pair in comparison to those of a single swimmer. Section 3.4
discusses the cluster stability of two swimmers with respect
to differences in their swimming behaviour, and §3.5 pro-
vides measurements of inter-sheet forces as a function of
separation distance in order to better rationalize the observed
clustering behaviour. Finally, we conclude in §4.
2. Methods and models
2.1. Viscoelastic Oldroyd-B fluid
SDPD [36] is a particle-based hydrodynamics method com-
monly used for mesoscopic simulations. SDPD is derived
through the discretization of Navier–Stokes equation and
includes consistent thermal fluctuations [43]. The standard
SDPD method [36] models viscous Newtonian fluids
and requires an extension for non-Newtonian fluids. We
use a viscoelastic extension of the SDPD method which
implements the Oldroyd-B model [37]. In this model, every
fluid particle contains Np polymer molecules. These polymer
molecules are not explicitly simulated, but represented by a
conformation tensor that characterizes polymer extension
through the second moment of the end-to-end distance
distribution function. The conformation tensor is defined as

ci ¼ 1
Np

XNp

a
qaqa, ð2:1Þ

where qa is the end-to-end distance of the ath polymer within
the fluid particle i.

Using the GENERIC formalism [44,45], evolution equations
for particle position, velocity, energy and conformation tensor
have been derived in a thermodynamically consistent way
[37]. When a Hookean dumbbell model is used to represent
polymers, the resulting SDPD method corresponds to the Old-
royd-B model of viscoelastic fluids. For a thermally isotropic
system, the motion equations are given by [37]

_ri ¼ vi,

mi _vi ¼
X
j

ðFC
ij þ FD

ij þ ~FijÞ,

FC
ij ¼

Pi

d2i
þPj

d2j

 !
� Fijrij,

FD
ij ¼ �gij[vij þ ðeij � vijÞeij],

~Fij ¼ sij dW
s
ij þ

1
3
tr½dW ij�1

� �
� eij
Dt

and _cmm
0

i ¼ 1
di
cmni knm0

i þ 1
di
cm

0n
i knm

i þ 1
t
ðdmm0 � cmm

0
i Þ þ d~cmm

0
i

Dt
,

ð2:2Þ
where ri, vi and mi are the position, velocity and mass of particle
i, respectively; FC

ij , F
D
ij and ~Fij are conservative, dissipative and
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stochastic forces between particles i and j, respectively; rij = ri−
rj, vij = vi− vj and eij = rij/rij. The local particle number density di
is defined as di ¼

P
j Wij with a smoothing kernel function

Wij =W(rij) that vanishes beyond a cut-off radius rc and deter-
mines a non-negative function Fij through the equation
riWij ¼ �rijFij. Pi is the pressure tensor, dW ij is a matrix of
independent Wiener increments, dW

s
ij is its traceless symmetric

part and Δt is the time step. The dissipative and random
coefficients γij and σij are given by

gij ¼
5h
3

Fij
didj

and sij ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTgij

q
, ð2:3Þ

where η is the dynamic viscosity, T is the temperature and kB is
the Boltzmann constant. The last expression in equation (2.2)
defines dynamics of the conformation tensor, where
kmn
i ¼Pj Fijr

m
ijv

n
ij is the velocity gradient tensor, τ is the relax-

ation time of polymers and d~c is the noise term. The pressure
tensor Pi depends on the conformation tensor as

Pi ¼ psi1þNpdikBTð1� ciÞ, ð2:4Þ

where the fluid pressure psi is determined by the equation of
state psi ¼ p0ðdi=d0Þa � pb (p0, α and pb are selected constants)
[46]. This viscoelastic SDPD model has two contributions to
the total fluid viscosity η= ηs + ηp, including solvent ηs and
polymer ηp components. The polymer contribution is given
by ηp=NpkBTd0τ and can easily be adjusted through the
parameters Np and τ. This formulation reduces to the standard
SDPD method for Newtonian fluids by setting Pi ¼ psi1.

The standard SDPD [36] and viscoelastic SDPD [37]
methods presented above do not conserve angular momen-
tum. However, angular momentum conservation can be
important for fluid–particle models to produce physically
correct results [47,48]. Therefore, a further SDPD extension
[47] that imposes the conservation of angular momentum in
simulations is employed here. Each particle is supplied
with a spin variable ψi, and an additional dissipative
rotational force between particles is given by

FR
ij ¼ �gij

rij
2
� ðci þ cjÞ: ð2:5Þ

The inclusion of FR
ij into equation (2.2) leads to the modifi-

cation of γij as [47]

gij ¼
20h
7

Fij
didj

: ð2:6Þ

The evolution equation for ψi is given by

_ci ¼
1
2Ii

X
j

rij � Fij, ð2:7Þ

where Fij is the total force between particles i and j, and Ii is
the moment of inertia.

The final equations of motion for the viscoelastic fluid
model are
r
:
i ¼ vi;

miv
:
i ¼

X
j

Pi

d2i
þPj

d2j

" #
� Fijrij � 20h

7

X
j

Fij
didj

vij þ ðeij � vijÞeij þ
rij
2
� ðci þ cjÞ

h i

þ2
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

20h
7

Fij
didj

s
dWs

ij þ
1
3
tr½dWij�1

� �
� eij
dt

;

c
:mm0

i ¼ cmni
di

X
j

Fijrnijv
m0
ij þ cm

0n
i

di

X
j

Fijrnijv
m
ij þ

1
t
ðdmm0 � cmm

0
i Þ þ decmm0

i

dt

and c
:

i ¼
1
2Ii

X
j

rij � Fij:

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

ð2:8Þ
The equations of motion are integrated using the velocity-
Verlet algorithm [49]. In this work, the smoothing kernel is
represented by the 2D Lucy function [50]:

WðrÞ ¼ 5
pr2c

1þ 3
r
rc

� �
1� r

rc

� �3

: ð2:9Þ

In simulations, thermal fluctuations are neglected by setting
kBT = 1.6 × 10−7. The noise term of conformation tensor is
also omitted. Therefore, the SDPD method is essentially
reduced to the SPH method with the Oldroyd-B extension.
All parameters of the modelled fluid can be found in table 1.

The Oldroyd-B model is one of the simplest models for
viscoelastic fluids, which contains nonlinear viscoelasticity.
There also exist studies of microswimmer propulsion in
linear viscoelastic fluids (e.g. Maxwell model) [51,52],
which suggest that moderate linear viscoelasticity (i.e. mod-
erate Deborah number) has little impact on the propulsion
of sperm-like swimmers. We expect that nonlinear terms in
a non-Newtonian constitutive relationship are probably not
negligible when considering beating flagella, since both the
strength of locomotion of a single flagellum and the inter-
action forces between two flagella scale quadratically with
the amplitude of oscillatory motion [28,53]. Despite its sim-
plicity, the Oldroyd-B model allows us to study the
importance of fluid viscoelasticity for swimmer clustering.
It should also represent basic aspects of a viscoelastic
mucus, a natural environment of sperm cells.
2.2. Model of a swimmer
A sheet model is represented by a collection of particles
assembled in three layers in 2D, as shown in figure 1. These
particles are interconnected by harmonic springs with an
energy E = ζl (r− r0)

2, where ζl is the spring stiffness and r0
is the equilibrium length. The middle layer of sheet particles
is subjected to a harmonic angle potential with the energy
E ¼ zubðu� u0Þ2, where zub is the bending coefficient and θ0 is



Table 1. Basic fluid and swimmer parameters. The reference parameters
represent parameter magnitudes most frequently used in simulations, and
are used for the non-dimensionalization of all simulation parameters, such
that the performed simulations can easily be reproduced.

parameter value

reference length rc (cut-off radius) 1.6

reference viscosity ηref 6.25

reference mass density ρref 6.25

unit of thermal energy kBT 1.6 × 10−7

particle number density d0 16=r2c
fluid density ρ/ρref 1.0

fluid viscosity η/ηref 9.6

polymer viscosity ηp/ηref 6.4

time step Δt/tref 0.00078

EoS pressure parameter p0/pref 261.4

static pressure ( p0− pb)/pref 32.8

EoS exponent α 7

length of a sheet L/rc 9.375 or 18.75

thickness of a sheet dth/rc 0.75

radius of the head Rh/rc 1.0

wavenumber of the travelling wave krc 3π/(L/rc)

harmonic bond coefficient ζl/ζref 1228.8

amplitude of the oscillating

equilibrium angle θb/π

0.067

coefficient for the harmonic angle

potential zub=z
u
ref

480.0

dimension of the simulated system

Lx/rc × Ly/rc

18.75 × 18.75 for short

sheets (L/rc = 9.375)

37.5 × 37.5 for long

sheets (L/rc = 18.75)

position constraint strength ζs/ζref 8192.0

orientation constraint strength

zut =z
u
ref

10240.0
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the equilibrium angle. To prescribe dynamic bending (or
beating) of the sheet, the equilibrium angle is a function of
both time and position as

u0 ¼ ub sinðks� vtÞ, ð2:10Þ

where θb is the amplitude of oscillating equilibrium angle, k is
the wavenumber of the travelling wave, s is a curvelinear
coordinate along the sheet centreline and ω is the angular fre-
quency. Equation (2.10) results in an imposed travelling wave
along the sheet, as shown in figure 1c,d. In some simulations,
a head is attached to the beating sheet, as illustrated in figure
1b,d. The connection between the sheet and the head is also
facilitated by harmonic bonds. Similarly to our previous
study [24], the swimmers are fully embedded into the mod-
elled fluid, and have the same number density as that of
fluid particles. Thus, the interaction between fluid and swim-
mer particles is the same as that between different fluid
particles. This results in no-slip boundary conditions for the
fluid at the swimmer surface.

Sheet bending stiffness κ can be estimated as [24]

k ¼ zll
3
0 þ 2zubl0, ð2:11Þ

where l0 is the equilibrium length between interconnected
particles in the middle layer. Note that this approximation
becomes inaccurate when deformation of the sheet is large.

In some simulations, the position and orientation of the
swimmers are fixed for the purpose of measuring hydrodyn-
amic forces between the two swimmers. Position of a
swimmer is controlled by a spring connecting the centre of
mass rCM of the swimmer and a prescribed anchoring pos-
ition r0 with the restoration force calculated as

Fres ¼ �zsðrCM � r0Þ, ð2:12Þ

where ζs is the spring stiffness. The restoration force is uni-
formly distributed to all particles forming the swimmer.
Furthermore, the orientation of a swimmer is controlled by
a similar method. For a prescribed orientation ϕ0 (in radians
with respect to the x-axis), and the current orientation ϕ,
whose value is found from a linear regression of the sheet
particles, a restoration torque is computed as

Tres ¼ �zut ðf� f0Þ, ð2:13Þ

where zut is the restoration torque coefficient. A force with a
magnitude of Tres=

Pðjri � rCMjÞ is applied to all particles
of the sheet in the direction perpendicular to ri− rCM, where
ri is the position of the ith particle of the sheet.

2.3. Simulation setup
In all cases, the simulation domain Lx × Ly is periodic in both
dimensions. The cut-off radius is fixed at rc = 1.6 and used as
a basic length scale. Fluid resolution characterized by the
number density d0 ¼ 16=r2c is kept the same in all simulations.
Furthermore, we introduce a reference mass density ρref =
6.25 and dynamic viscosity ηref = 6.25, which define a mass
scale mref ¼ rrefr

2
c and a time scale tref ¼ r2crref=href. Similarly,

further reference scales are introduced for the frequency ωref =
1/tref, velocity vref = rc/tref, force Fref ¼ r3crref=t

2
ref, pressure

pref ¼ r2crref=t
2
ref, spring stiffness zref ¼ r2crref=t

2
ref, angle

potential strength zuref ¼ r4crref=t
2
ref and flexural rigidity

kref ¼ r5crref=t
2
ref. Table 1 shows parameters that are normally

used in simulations. When other parameter values are used,
they are explicitly specified in the text. Selection of the resol-
ution and smoothing parameters (d0 and rc) is justified
through two convergence tests: (i) unsteady flow above an
oscillating plate and (ii) a waving sheet with a prescribed
waveform. These tests are presented in appendix A, and
show that simulation results are independent of the choice
of d0 and rc.

The simulation system is characterized by three non-
dimensional numbers: (i) Sperm number defined as
Sp = (ηω/κk3)1/3, (ii) Deborah number De = τω and (iii) Rey-
nolds number defined as Re = f b2ρ/η, where f = ω/(2π) and
b is the wave amplitude. Sp quantifies the dimensionless
ratio of fluid to bending stresses, De characterizes fluid elas-
ticity and Re quantifies the importance of inertia. Even
though Reynolds numbers are generally small for micro-
swimmers, inertial effects may not always be neglected, as
reported in other swimmer studies [22–24,54].



θ0
θ

(a)

(c)

(b)

(d)

L L
Rh

Figure 1. (a) Illustration of the sheet model constructed from particles (blue dots) interconnected by springs. L is the sheet length. (b) Illustration of a swimmer
model with a head. Rh is the head size. (c) Snapshot of an actuated sheet. The inset shows the configuration of the particles and springs with θ representing the
angle between neighbouring springs in the middle layer. (d ) An actuated swimmer with an attached head.
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3. Results and discussion
3.1. Swimming speed of a single swimmer
Analytical prediction [53] for an infinitely long Taylor sheet
suggests that its swimming speed decreases with increasing
fluid elasticity or De as

UNN

UN
¼ 1þ hs=hDe2

1þDe2
, ð3:1Þ

where UN ¼ 1
2vb

2k is the swimming velocity in a Newtonian
fluid. However, when sheet flexibility is also considered, fluid
elasticity can actually enhance the swimming speed [55]. For
large enough Sp, an increase in De monotonically results in a
larger speed. The transition from hindered to enhanced pro-
pulsion occurs when Sp3 . 1=ð2 ffiffiffi

b
p Þ, where β = ηs/η. In the

limit of Sp≫ 1, the ratio between UNN and UN becomes [55]

UNN

UN
¼ 1þ hs=hDe2

1þ ðhs=hÞ2De2
: ð3:2Þ

To compare theoretical predictions with simulations, the
motion of a finite-length sheet is modelled for different De
and Sp. Figure 2a shows the dependence of the swimming
speed V on De for different beating frequencies. At low Sp
with increasing De, the swimming velocity first decreases,
reaching a minimum at De≈ 1, and then increases. However,
at high Sp, the swimming velocity monotonically increases
with De. The presence of a head attached to the sheet does
not affect this trend, but reduces the swimming speed V
due to an increased resistance of the swimmer with the
head. The critical Sperm number, at which the minimum in
swimming velocity disappears, is close to 0.88 in figure 2a.
According to the theory in [55], the critical Sp is
1=ð2 ffiffiffi

b
p Þ1=3 ¼ 0:86, in a good agreement with our simulation

results. Figure 2b shows the same transition from partial hin-
drance of swimmer speed to a monotonic enhancement,
where Sp is increased through an increase of the sheet
length. Here, the critical Sp is close to 0.81, in a good agree-
ment with the theoretical prediction of 0.86 [55]. Since β is
fixed in all simulations, sheets with Sp > 0.86 will be referred
to as soft sheets further in the text, and otherwise as stiff
sheets.

The existence of a minimum swimming velocity as a func-
tion of De at low Sp has also been demonstrated in
simulations of undulating Caenorhabditis elegans with a
stroke asymmetry [56,57]. This non-monotonic velocity
dependence on De [57] is attributed to fluid viscoelasticity,
which results in a non-monotonic behaviour of the beating
amplitude for moderately soft sheets [56–58]. However, pre-
vious studies [56,57] also report that the velocity behaviour
becomes monotonic when the sheet is very soft, in agreement
with our simulation results. Furthermore, the dependence of
swimming speed in figure 2 agrees well with experimental
results [59] on flexible sperm-like swimmers in a
glucose-based Boger fluid, where fluid elasticity was found
to monotonically enhance the swimmer’s propulsion.

To test the possible effect of inertia in our model, we per-
formed a number of simulations for different Re by changing
the fluid density. Figure 3a shows swimming velocity for var-
ious Re, and demonstrates that Re does not affect the trend of
monotonically increasing V as a function of De. Furthermore,
for ρ/ρref≤ 0.125 (Re≤ 0.004), the simulation results become
independent of Re, representing the Stokes limit. Also, the
limit of Sp = 0 is studied by prescribing the motion of sheet
particles as a pure sine wave, travelling on an inextensible
sheet (more details can be found in appendix A and [24]).
Figure 3b shows that at Sp = 0, fluid viscoelasticity signifi-
cantly impedes the propulsion speed, which decreases
monotonically with increasing De. This suggests that the
non-monotonic dependence of swimming velocity on De at
large enough Sp is a result of the interaction between sheet
elasticity and fluid viscoelasticity. Note that the curves for
different ω in figure 3b do not collapse onto a single curve
even after scaling by ω, which is the case for an infinite
Taylor sheet. Finally, the sheet of a finite length swims
significantly slower than an infinite sheet.

At zero Reynolds number, kinematic reversibility does
not allow a swimmer to attain net displacement in a Newto-
nian fluid if the deformation is reciprocal, which is known as
the Purcell’s scallop theorem [60]. However, experiments [61]
and theories [62,63] suggest that in a non-Newtonian fluid,
net propulsion should be possible for a reciprocal defor-
mation. To test the scallop theorem in simulations, the
beating of a sheet with reciprocal deformation is employed,
where the equilibrium angle within the sheet is prescribed as

u0 ¼ ub sinðksÞ sinðvtÞ: ð3:3Þ
In this case, there is no travelling wave, and sheet bending is
reciprocal. Figure 4 shows the swimming velocity of the sheet
with a reciprocal deformation as a function of De. The blue
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Figure 2. (a) Swimming velocity V of a single swimmer (with and without a head) as a function of De for various beating frequencies. The sheet length is L/rc =
18.75. (b) Swimming velocity of a swimmer without a head for different sheet lengths. Simulation domain dimensions are fixed at Lx/rc × Ly/rc = 37.5 × 37.5 and
ω/ωref = 2.05. In all simulations, ρ/ρref = 0.125 and the bending stiffness of the sheet is κ/κref≈ 281.1.
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Figure 3. (a) Effect of inertia on swimming velocity V for different Re as the fluid density ρ is changed. V becomes independent of Re for ρ/ρref≤ 0.125. Here,
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krc = 2π/(L/rc), b/rc = 0.625 and kb = 0.314.
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curve represents the swimming velocity of the sheet without
a head, which is zero for all De values. This indicates that
fluid viscoelasticity does not successfully break the symmetry
in the case of a headless sheet, and the scallop theorem
remains valid. The red curve in figure 4 corresponds to
velocity of the sheet with an attached head, which has a
non-vanishing propulsion for all De. In this case, the defor-
mation of the swimmer is not reciprocal due to the
presence of the head, even though the sheet bending is reci-
procal. Note that the swimming velocity is much smaller
than when a travelling wave is imposed. Furthermore, the
swimming velocity does not vanish at De≈ 0, indicating
that symmetry breaking and a net propulsion in this case
are due to the presence of the head rather than fluid
viscoelasticity. However, fluid viscoelasticity for a headed
swimmer does have a significant effect on the swimming
velocity, which exhibits a non-monotonic trend as a function
of De, qualitatively similar to that in figure 2 for stiff sheets.
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Figure 5. (a) Evolution of the distance ΔD between two stiff sheets over time for different De. Dots correspond to simulation data, while solid lines are fits using
equation (3.4). Inset shows a dynamic clustering process for De = 2.4, where sheets swim from the right to the left. Various colours represent different times of the
sheet positions. (b) Dependence of the characteristic clustering time τs on De. For all cases, L/rc = 9.375, ω/ωref = 2.05, κ/κref = 281.1 and Sp = 0.49.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220667

7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 A

pr
il 

20
24

 

3.2. Dynamic clustering of two identical sheets
A beating sheet with a head is a pronounced pusher, and a
sheet without the head is still a pusher, though a much
weaker one [64]. In the far field, two sheets induce two
force dipoles attracting each other with their flow field decay-
ing as 1/r2. However, when two sheets are close enough,
their interaction is more complex than the attraction between
two force dipoles. In fact, the short-range interaction and pre-
sent noise likely dominate the collective behaviour of
flagellated microswimmers [34]. Therefore, we investigate
the short-range interaction between two sheets in order to
better understand their clustering.

We start with two identical sheets placed parallel to each
other and separated by a distance d that is smaller than
their length, and explore their dynamic clustering due to
hydrodynamic interactions. Figure 5a shows that the inter-
swimmer distance ΔD for two relatively stiff sheets at
Sp = 0.49 decreases with time until it comes to a stable fixed
value that is independent of De. The inset in figure 5a
illustrates the dynamic approach of two sheets toward each
other. Evolution of the inter-swimmer distance can be charac-
terized by a clustering time τs computed by fitting the
solution of a modified Adler equation [24,26,65] to the
temporal evolution of ΔD from simulations as

DD ¼ A tan�1 ( tanðc0=2Þ e�t=ts )þ C, ð3:4Þ

where A and C are fitting parameters and ψ0 is the initial
phase difference between the two swimmers (here, it is just
another parameter to be fitted). Solid lines in figure 5a
demonstrate that fits with equation (3.4) to the simulation
data are very good. The dependence of τs on De is presented
in figure 5b. As De increases, the clustering time first
increases reaching a peak at De≈ 2–3, and then decreases.
The Newtonian limit at De = 0 corresponds to the fastest clus-
tering of two swimmers. Simulations of swimmers with and
without a head show that the head slows down the clustering
process. However, the qualitative behaviour of τs as a function
of De is not affected by the presence of the head.

For soft sheets at Sp = 0.97, the dynamic clustering is
much less robust. Figure 6a shows that the distance between
two soft sheets does not monotonically decrease over time for
most of De values. In fact, the distance ΔD oscillates and may
become even larger than its initial value. The inset in figure 6a
illustrates this oscillating process, in which the sheets period-
ically attract and repel each other. Interestingly, the presence
of swimmer heads favours a stable distance regardless of the
value of De, as shown in figure 6b. Independently, whether
the head is present or not, the fluid elasticity significantly
affects the oscillation/clustering process. For the case without
a head, the strongest oscillations in ΔD occur at De≈ 2, while
in the Newtonian limit (De = 0.08), the sheets reach a stable
distance. Figure 6c presents the final distance between two
clustered sheets with a head. ΔD is largest at De≈ 2, indicat-
ing that clustering interactions are weakest around De≈ 2.
3.3. Swimming characteristics before and after
clustering

Early experiments with bull spermatozoa [1] have shown that
sperm clustering leads to changes in their beating pattern,
including an increase in the beating frequency, wave ampli-
tude and the swimming speed. Theoretical analysis of two
infinite elastic Taylor sheets shows that the wave amplitude
of the sheets varies with a change in their phase difference,
and the maximal amplitude occurs when the phase difference
vanishes [28]. Recent experiments also demonstrate that as
the distance between two flagella decreases, the flagellar
waveform exhibits a systematic change [17]. For biological
swimmers, clustering often enhances the propulsion of a
formed cluster [1,66]. A theoretical prediction for two
Taylor sheets is that the synchronized state corresponds to a
minimum energy-dissipation rate [16,25,28]. In reality, it is
of course possible that after a cluster is formed, the swimmers
adapt their beating frequency and amplitude through some
feedback mechanism. Currently, it is unclear whether the
observed boost in propulsion of clustered swimmers comes
from the possible active adjustment or due to the clustered
configuration or both. Here, the prescribed driving of the
sheets is kept unchanged before and after clustering, while
the overall propulsion of a formed pair is examined.
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Figure 6. (a) Evolution of the distance between two soft sheets without a head. Inset demonstrates trajectories of the sheets at De = 1. Various colours represent
different times of the sheet positions. (b) The presence of heads facilitates stable clustered distance between two swimmers. Inset illustrates the clustering process at
De = 1. Various colours represent different times of the sheet positions. (c) For sheets with heads, the final distance between the two sheets depends on fluid
elasticity. Inset shows several snapshots of two clustered sheets. In all cases, L/rc = 18.75, ω/ωref = 2.05, κ/κref = 281.1 and Sp = 0.97. In all insets, the swimming
direction of the sheets is from the right to the left.
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Figure 7 presents a comparison of the swimming velocity
of a single swimmer and a clustered doublet. The primary
observation is that at low beating frequencies (corresponding
to stiff single sheets or low Sp), clustered sheets swim slower
than a single one, but at high enough beating frequencies
(representing soft single sheets or large Sp), clustering
enhances the propulsion speed of a pair. Furthermore, the
monotonic behaviour of V with increasing De at high ω for
a single swimmer becomes non-monotonic after the cluster
is formed, as shown in figure 7a. Figure 7b shows that the
maximum propulsion velocity as a function of ω increases
and shifts toward larger ω values after clustering. Note that
several properties are changed for a clustered doublet.

(i) Viscous friction on the doublet is larger than that on a
single swimmer due to an increased thickness of the
doublet swimmer, as shown in the inset of figure 7a.

(ii) The beating amplitude increases after clustering
through an increase of the average amplitudes of the
two dominant modes, as shown in figure 7c.

(iii) The doublet becomes effectively stiffer after it is
formed, because the clustering results in a larger
second moment of area for the cross-section section
of the swimmer/doublet.
The competition between an increased viscous resistance and
beating amplitude after clustering explains the reduction in
propulsion of a doublet at small frequencies and the enhance-
ment of velocity at large ω. At low frequencies, the sheets are
effectively stiff, and an increase in the beating amplitude is
small (see figure 7c), not allowing to overcome the effects of
an increased viscous resistance of the formed doublet. At
large enough ω, the sheets become effectively soft, and the
effect of an increased beating amplitude on the doublet
speed dominates over the increased viscous resistance, such
that the clustered pair swims faster than single swimmers.
Furthermore, an effective stiffening of the doublet accounts
for changes in the V–De curves in figure 7. For example, a
non-monotonic dependence of V on De for a pair results
from the fact that after clustering, the sheets have effectively
a lower Sp in comparison to that before the clustering. As
shown in §3.1, a decrease in Sp can affect the V–De relation,
such that V becomes non-monotonic with a minimum at
De≈ 1. After a cluster is formed, Sp decreases due to an
increased second moment of area for the cross-section section
of the doublet, which may lead to a significant slowing down
of the clustered doublet.

To better support the arguments above, figure 8 shows
the dependence of swimming velocity for a single swimmer
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on beating amplitude and sheet length. Figure 8a demon-
strates that an increase in the beating amplitude leads to an
increase in V and a shift of the maximum velocity toward
larger ω values (i.e. the saturation frequency increases).
Figure 8b shows that a decrease in the sheet length (or
decrease in Sp) results in the maximum V to shift toward
larger ω values. As the length of the sheet decreases, the
beating amplitude also decreases, but the maximum in V
remains nearly unaffected by a change in Sp. Therefore,
the phenomenon shown in figure 7b, that the maximum V
becomes larger and shifts toward larger ω values after clus-
tering, is a direct result of the increased beating amplitude
and the decreased effective elasticity of a doublet after the
cluster is formed. Note that in experiments, bovine sperm
cells may change their beating frequency upon clustering
[1], which could contribute to an increase of the saturation
frequency.

For swimmers with a head, the clustering results do not
change qualitatively, as shown in figure 9. There are only
two minor differences: (i) the velocity of a doublet is smaller
in the case with heads, due to an increase in the viscous
resistance resulting from the presence of heads and (ii)
enhancement of the swimming velocity is generally smaller
for headed swimmers, while the reduction in V is larger.
The main reason for the second difference is that the
presence of a head prevents close alignment of the sheets,
as there is always a gap between the clustered sheets. This
gap reduces hydrodynamic inter-sheet interaction, and,
therefore, weakens the velocity enhancement after the
cluster is formed.
3.4. Stability of a clustered doublet
Experiments on the collective behaviour of bovine sperm cells
indicate that fluid viscoelasticity promotes clustering of the
sperm cells in the regime of De≤ 2 [5], such that the mean
cluster size first increases and then decreases with increasing
De. At the first glance, this seems to be qualitatively different
from our results in §3.2, where it is shown that the clustering
time is the largest at De≈ 1. However, other properties such
as the stability of a formed pair can play an important role
in determining the cluster size in addition to the clustering
time. Biological swimmers are never identical to each other
and can have substantial differences in their swimming
characteristics, which may result in a temporary attraction
rather than a stable cluster formation. For instance, exper-
iments show that formed clusters are dynamic, such that
the swimmers can switch from one cluster to another [5].
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Furthermore, swimmer clusters can constantly appear and
disappear. To better understand cluster stability, we investi-
gate the effect of viscoelasticity on the stability of formed
clusters.

Even though a formed pair of two identical swimmers
appears to be stable, differences in the swimmer geometry
or propulsion can affect the doublet stability. To examine
doublet stability, we perform simulations which start with a
perfectly clustered pair, but there are imposed differences in
the driving forces (or bending amplitudes) of the two
sheets. For relatively stiff sheets with Sp = 0.43, figure 10a,b
demonstrates that fluid viscoelasticity affects the cluster stab-
ility for the amplitude difference of Δθb/π = 0.061 between the
two swimmers. For this difference in propulsion, the sheets
stay together only when De≈ 1, and separate otherwise.
Furthermore, the clustered configuration of two distinct
swimmers has generally a worse alignment of sheets in com-
parison to the case of two identical swimmers, as shown in
the inset of figure 10a. For soft sheets with Sp = 1.02 and
Δθb/π = 0.0092, figure 10c,d illustrates that De≈ 1 also leads
to a stable cluster, while for other values of De, the doublet
might become unstable. Note that the soft sheets align well
after clustering with a nearly zero distance between them
(see the inset of figure 10c).

Cluster stability diagrams for stiff and soft sheets as a
function of Δθb and De are shown in figure 11. The larger
the driving force difference, the more likely the formed pair
is unstable. Fluid elasticity also affects the cluster stability,
which is best at De≈ 1, and becomes worse for smaller and
larger De values. The cluster stability diagram for soft
sheets (Sp = 1.02) in figure 11b is qualitatively similar to the
case of stiff sheets in figure 11a. However, the clustered con-
figuration is less stable for soft sheets than for stiff sheets.
Thus, sheet elasticity reduces the stability of a doublet.
Fluid elasticity has a similar effect on the cluster stability of
both stiff and soft sheets, with De≈ 1 resulting in the most
stable cluster formation. These results are consistent with
experimental observations of the cluster formation by
sperm cells [5], where the clustering is enhanced around
De≈ 1.
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3.5. Inter-sheet forces
To better support the clustering results, hydrodynamic forces
between two sheets are measured in simulations where the
position and orientation of the sheets with respect to each
other are fixed. Figure 12 shows inter-sheet forces for two
identical stiff sheets with the same orientation but varying
vertical and horizontal distances between them. For all verti-
cal distances rv between the sheets, figure 12a,b shows that the
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vertical forces in the normal to sheet direction are attractive,
and favour clustering. The attraction forces decrease with
increasing inter-sheet distance. Fluid elasticity also influences
the measured forces, with a minimum attraction force at De≈
1–2, which is consistent with the longest clustering time in
figure 5. The simulation results show that the vertical force
decays as 1=rav , where α∈ [3.6, 4.3].

Figure 12c,d presents interaction force for varying hori-
zontal distances rh. For small distances (krh≤ 1.6), the
horizontal forces between two sheets are attractive regardless
of the value of De. However, if rh is large enough, large De
magnitudes lead to repulsive forces. The transition between
the attractive and repulsive horizontal forces shifts to smaller
De with increasing rh (see figure 12c). Note that the vertical
forces remain attractive for all rh values. Figure 12d shows
that the attractive horizontal forces have a maximum at
krh≈ 1.3, independent of De. For small krh≤ 0.8, the effect
of fluid elasticity is rather weak, while for krh > 0.8, De signifi-
cantly influences horizontal forces between the sheets.

Force measurements for two identical soft sheets are
shown in figure 13. In comparison with the case of stiff
sheets, for which vertical forces are always attractive, the ver-
tical forces for soft sheets change sign from being attractive to
repulsive. Figure 13a,b presents vertical forces for several rv
and De (here, rh= 0). For small De, vertical forces are generally
repulsive for most distances rv. An increase in De results in Fv
becoming attractive. These attractive forces are monotonically
increasing with De for small rv, but have a maximum at large
rv. If rv is large enough (e.g. krv = 3.14), the vertical force
becomes dominantly repulsive again. The forces in horizontal
direction for a fixed vertical distance of krv = 1.88 are shown
in figure 13c,d. The dependence of Fh on rh and De is rather
complex with multiple transitions between attractive and repul-
sive forces. In general, both increase and decrease in De can
cause the repulsive forces Fh to become attractive, and this is
more likely to happen when the distance rh is large. The maxi-
mum repulsive forces in the horizontal direction appear within
the range De∈ [1, 4].

The force measurements above are consistent with the
clustering results in §3.2. For example, when the sheets are
stiff, they attract each other independently of De. When the
sheets are soft, they may also repel each other, depending
on their relative position and fluid elastic properties. How-
ever, the force measurements do not seem to explain that
the distance between two clustered soft sheets can oscillate
for some conditions (see figure 6a), which could occur
through a periodic switch between inter-sheet repulsion
and attraction. A possible explanation of this observation is
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Figure 13. Hydrodynamic forces between two soft sheets. (a) Vertical force Fv on the upper sheet as a function of De for different separation distances rv and a fixed
horizontal difference rh = 0. (b) Vertical force on the upper sheet as a function of rv. (c) Horizontal force Fh on the upper sheet as a function of De for different
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the fact that during the dynamic clustering process, orien-
tation of the sheets can change (see the inset in figure 6a),
so that they are not always moving in parallel. To illustrate
the importance of relative orientation, figure 14 shows force
measurements between two sheets having a small tilt in
their relative orientation, which may change the direction of
inter-sheet forces. Change in the force sign due to a small
tilt is clearly present for soft sheets, while the stiff sheets
are much more robust to such perturbations. Thus, the oscil-
lation in inter-sheet distance of a clustered pair is likely
caused by the dynamic change in the relative position and
orientation of the two sheets.

Despite the complexity in swimmer interactions, the force
measurements provide a robust explanation for the cluster
stability in §3.4. When two sheets separate as a result of the
asymmetry in their beating amplitude, one of them always
swims faster than the other one and the relative displacement
along the swimming direction becomes larger than the verti-
cal separation. Therefore, the horizontal inter-sheet forces
mainly control the clustering and separation. Figure 15a pre-
sents horizontal forces between two asymmetric stiff sheets
(Sp = 0.49) for fixed Δθb/π = 0.0223 and krv = 2.76. The force
curves show that there are two fixed points where Fh = 0,
and the horizontal separation distance with a smaller rh is
the stable point at which the clustering is successful. The
cluster stability can be measured through the force gradient
rFh at the stable fixed points, so that the clustering is more
stable for larger values of the gradient. Figure 15b presents
the horizontal force gradients at the stable fixed points for
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Table 2. Key findings.

property sheet obtained results

speed of a single swimmer stiff sheet the speed first decreases, and then increases with increasing De

soft sheet the speed monotonically increases with increasing De

dynamic clustering stiff sheets both headed and headless swimmers form clusters

cluster formation is slowest for De≈ 2–3

soft sheets the distance between headless swimmers oscillates in viscoelastic fluids

the oscillation is strongest at De≈ 2

headed swimmers cluster, with the slowest clustering time at De≈ 2

inter-sheet forces stiff sheets the traverse force is attractive Fv � 1=r4v with a minimum at De≈ 1–2

the longitudinal force is attractive at small longitudinal distances,

but becomes repulsive at large longitudinal distances and large De

soft sheets frequent transitions between sheet attraction and repulsion for De > 0

inter-sheet distances and tilt angles affect the sign of these forces

properties after clustering stiff sheets the speed decreases after clustering

soft sheets the speed increases after clustering

the monotonic increase in the V–De curve becomes non-monotonic

cluster stability of distinct swimmers stiff sheets clusters are most stable at De≈ 1

soft sheets clusters are most stable at De≈ 1

inter-sheet forces between distinct swimmers stiff sheets the force gradient at a stable point is largest at De≈ 1

soft sheets the force gradient at a stable point is largest at De≈ 2–3
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different De, supporting that the most stable condition is at
De≈ 1. This result is in excellent agreement with the stability
diagram in figure 11a. Figure 16 presents Fh and rFh for soft
sheets (Sp = 0.97) with fixed Δθb/π = 0.0054 and krv = 1.88.
Unlike the case of stiff sheets where the stable fixed points
correspond to large enough rh (krh > 0.4), for soft sheets the
stable rh is generally very close to zero. This fact explains
the difference in relative sheet position between the insets
of figure 10a,c. Absolute value of the horizontal force gradient
has a maximum at De≈ 4 and decreases slightly after this
maximum, in agreement with the smooth stability line in
figure 11b. Note that the position of the maximum is not
exactly at De = 1.
4. Summary and conclusion
In our previous work [24], the synchronization of two infinite
sheets in viscoelastic fluids was studied. One of the main
results is that fluid viscoelasticity leads to strong synchroniza-
tion forces for large beating amplitudes and Deborah
numbers De > 1, suggesting a strong clustering of swimmers
under these conditions. In this study, interactions of two
finite-size free swimmers (i.e. closer to real swimmers) are
investigated and the fluid-mediated interactions between
them are found to be rather weak. Further investigated
aspects include the influence of sheet elasticity, an attached
head, the stability of two clustered swimmers and the swim-
mer characteristics after pair formation. The key findings are
summarized in table 2.

Our simulations show that both fluid viscoelasticity and
sheet elasticity significantly affect the clustering of two swim-
mers, including their clustering time, changes in their
swimming behaviour after the doublet is formed, the stability
of the cluster and the inter-sheet forces. For a relatively stiff
sheet (Sp & 0:86), an increase in fluid elasticity first impedes
its speed and then results in its increase, with a minimum
velocity at De≈ 1. For a soft sheet (Sp * 0:86), the swimming
speed is a monotonically increasing function of fluid elasticity.
Therefore, soft sheets have the slowest speed in a Newtonian
fluid at De = 0.

Two stiff sheets generally attract each other, with the
weakest attraction strength (or the longest clustering time)
corresponding to De ≈ 2–3. Attractive interactions between
two sheets in the vertical direction decay relatively fast
with the inter-sheet distance rv, such that Fv � 1=rav with
α ≈ 4. Clustering of two soft sheets is much less robust,
often showing a time-dependent oscillating distance
between the two sheets. This behaviour can be explained
by frequent transitions between sheet attraction and repul-
sion, which depend on relative inter-sheet distances and tilt
angles. At low Sp, the clustering of two sheets generally
exhibits a decrease of the doublet speed, as a result of a
larger viscous resistance of the pair in comparison to a
single swimmer. At large Sp, the speed of a doublet after
clustering is increased due to an enhancement in the beating
amplitude of the pair. Furthermore, the clustering leads to stif-
fening of the doublet swimmer in comparison to a single
swimmer, such that the relationship between the doublet
speed and De shifts toward swimming of a stiffer swimmer
after the cluster is formed. Swimmers with a head show a
qualitatively similar behaviour, with a reduced swimming vel-
ocity in comparison to the case without a head due an
additional viscous friction from the head.

Despite the fact that two identical swimmers successfully
cluster, the stability of a doublet can substantially be affected
by differences in the sheet properties, such as beating fre-
quency, wave amplitude and relative tilt angle between the
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two sheets. For instance, already a relatively small difference
in the driving amplitude of two sheets (Dub=p * 0:06) results
in no stable clustering of the pair. Furthermore, a tilt angle of
a few degrees in the relative orientation of two sheets can lead
to repulsion between them. Note that the cluster formation is
most stable at De≈ 1, which has been confirmed through the
calculation of interaction force gradients at stable fixed points
for different De. In conclusion, the doublet stability of two
distinct swimmers is robust only for small differences
between the sheets, which experience weak attractive or
repulsive hydrodynamic interactions depending on various
conditions.

In the context of collective behaviour of multiple
swimmers, the effect of fluid viscoelasticity can be quite com-
plex, as fluid viscoelasticity often affects non-monotonically
interaction forces and the stability of swimmer clustering.
Consistently with experiments on enhanced clustering of
bovine sperms in viscoelastic fluids [5], our simulations
show that the stability of clustered swimmers is enhanced
at De≈ 1. However, sperm clusters are dynamic, such that
sperms can leave a cluster or new cells can join it, which is
likely due to differences in the sperm properties, such as
different beating amplitudes and frequencies, flagellum
lengths and stiffnesses. As a result, the differences in swim-
mer properties lead to distinct local flow fields around
interacting swimmers, affecting their hydrodynamic coupling
and determining their clustering potential.
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Appendix A. SDPD convergence tests
Convergence tests for the SDPD method have been per-
formed for two problems: (i) an unsteady flow above an
oscillating plate (the second Stokes problem) and (ii) a
waving sheet with a prescribed waveform. For the first
problem, the flow is governed by the following equations:

r
@vx
@t

¼ hs
@v2x
@y2

þ hp

t

@cxy
@y

,

@cxx
@t

¼ 2cxy
@vx
@vy

þ 1
t
ð1� cxxÞ

and
@cxy
@t

¼ @vx
@y

� cxy
t
:

9>>>>>>>>>=>>>>>>>>>;
ðA1Þ

These governing equations are subject to boundary con-
ditions given by

vx ¼ V sinðvtÞ, y ¼ 0 or y ¼ Ly: ðA2Þ
Here, for convenience, the velocity boundary conditions are
imposed at both y = 0 and y = Ly. In SDPD, this setup is
achieved by using periodic boundary conditions in the
y-direction. The initial conditions are given by

vx ¼ 0, for t ¼ 0, 0 � y � Ly,
cxx ¼ 1:0, for t ¼ 0, 0 � y � Ly

and cxy ¼ 0:0, for t ¼ 0, 0 � y � Ly:

9=; ðA3Þ

Equations (A1) are first solved in the domain 0≤ y≤ Ly
using a finite-difference method (Crank–Nicolson method).
Oscillation of a monitored point at Ly/2 is recorded. Then,
the same problem with identical parameters is solved using
our SDPD implementation. The oscillation of the monitored
point at Ly/2 is compared between the two methods using
the L1 error:

L1 ¼ 1
N

XN
t

jxf ðtÞ � xsðtÞj, ðA4Þ

where xf is the position determined from the finite-difference
scheme, xs is the position determined from the SDPD simu-
lation and N is the number of samples. We obtain N = 400
equidistant samples from the first four oscillation periods.
To test the convergence of the SDPD simulation, both the
cut-off radius and the number density of particles are
varied. The L1 errors for different rc and d0 are shown in
figure 17a. For the SDPD/SPH method, errors vanish when
d0→∞, Nneig→∞ and h→ 0 [69], where Nneig is the
number of neighbour particles within the smoothing length
h. Figure 17a demonstrates that the L1 errors reduce with
increasing d0 and rc, and scale with Nneig as L1 /N�1:72

neig . For
all simulations in this article, the resolution d0 ¼ 16=r2c and
the cut-off radius rc = 1.6 were used, which is a reasonable
choice based on the convergence results in figure 17.

The second problem for testing the convergence of SDPD is
a finite-size waving sheet. The employed actuation sheet model
explicitly depends on the discretization resolution. If the bend-
ing stiffness κ of the sheet is finite, a modification in the sheet
resolution would necessarily affect the bending stiffness, which
makes it difficult to study the convergence for soft sheets.
Therefore, the case of κ =∞ (Sp = 0) is only considered here,
as the waveform of the sheet is prescribed and no internal
beating actuation is needed. When a sine wave y(x, t) = bsin
(kx− ωt) travels along the sheet, the motion of sheet particles
in the frame of the swimming sheet is given by

vx ¼ v

k
�Q cos u, vy ¼ �Q sin u,

tan u ¼ bk cosðkx� vtþ fÞ

and Q ¼ v

2pk

ð2p
0

(1þ b2k2 cos2 j)1=2dj,

9>>>>>=>>>>>;
ðA5Þ

where vx and vy are the particle velocities. Motion of the
SDPD particles representing the sheet is imposed using
equation (A 5), which results in driving the surrounding
fluid flow. Then, the swimming velocity of the sheet is
equal to the far-field flow velocity. To test the convergence
of swimming velocity as a function of fluid resolution, the
number of particle layers (Nlay) within the sheet represen-
tation is varied with the sheet thickness and length fixed.
In this case, the number density of fluid particles cannot be
altered arbitrarily, since we have to guarantee that the
number of layers within the sheet representation is
an integer. Therefore, d0 is changed according to the

https://github.com/mokchie/lammps_flagellated_swimmer.git
https://github.com/mokchie/lammps_flagellated_swimmer.git
https://github.com/mokchie/clustering_swimmers.git
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number of layers Nlay. Figure 17b presents the swimming vel-
ocity for different sheet resolutions as a function of De. As the
number of layers in the sheet representation is increased, the
velocity results converge for all De values. For the lowest
resolution (d0 = 4.17), the largest error is about 6% with
respect to the converged velocity values. For a good balance
between the computing cost and accuracy, d0 = 6.25, Nlay =
3 was selected for all simulations in this work.
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