001     1025443
005     20250203103125.0
024 7 _ |a 10.3390/app13042615
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02895
|2 datacite_doi
024 7 _ |a WOS:000938748900001
|2 WOS
037 _ _ |a FZJ-2024-02895
082 _ _ |a 600
100 1 _ |a Keane, Patrick F.
|0 0000-0002-4494-9563
|b 0
|e Corresponding author
245 _ _ |a Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714575689_3375
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Geopolymers (GP) are a class of X-ray amorphous, nanoporous, nanoparticulate materialsthat can be mixed, poured, and cured under ambient conditions. Typically, geopolymers are madeusing a Group 1 (G1) alkali activator such as sodium or potassium metasilicate and an aluminosilicateprecursor. An analogous material to GPs is ordinary Portland cement because of the similarities inprocessing, however, the resulting microstructure is more similar to that of a glass. Geopolymers aremore thermally stable than OPC and can therefore be used in a variety of thermal energy storagesystems, as energy storage is an increasing global concern. In this study, potassium metakaolin-basedgeopolymer composites containing glass particles and alumina platelets were manufactured, heatedin air, and exposed to molten sodium chloride or potassium chloride under an air atmosphere.Results showed the formation of an amorphous self-healing geopolymer composite (ASH-G) thatcould contain molten G1 chlorides for over 200 h without signs of macro or microscopic chemicaldegradation. The filling of cracks by glass particles in the composite after heating to 850 ◦C makes thismaterial self-healing. It was found that the morphology of ASH-G composites was more affected bytemperature and duration than contact with corrosive molten chlorides in air. Future works includeinvestigating the effect of molten salt on mechanical properties during initial heating, after prolongedheating, and the material compatibility with other molten Group 1 chloride eutectics.
536 _ _ |a 1243 - Thermal Energy Storage (POF4-124)
|0 G:(DE-HGF)POF4-1243
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jacob, Rhys
|0 P:(DE-Juel1)188539
|b 1
700 1 _ |a Belusko, Martin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bruno, Frank
|0 0000-0002-1805-0036
|b 3
773 _ _ |a 10.3390/app13042615
|g Vol. 13, no. 4, p. 2615 -
|0 PERI:(DE-600)2704225-X
|n 4
|p 2615 -
|t Applied Sciences
|v 13
|y 2023
|x 2076-3417
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025443/files/Self-Healing%20Glass_Metakaolin-Based%20Geopolymer%20Composite.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025443/files/Self-Healing%20Glass_Metakaolin-Based%20Geopolymer%20Composite.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025443/files/Self-Healing%20Glass_Metakaolin-Based%20Geopolymer%20Composite.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025443/files/Self-Healing%20Glass_Metakaolin-Based%20Geopolymer%20Composite.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025443/files/Self-Healing%20Glass_Metakaolin-Based%20Geopolymer%20Composite.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025443
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188539
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1243
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:55:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:55:23Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:55:23Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21