001025444 001__ 1025444 001025444 005__ 20250203103243.0 001025444 0247_ $$2doi$$a10.1016/j.solmat.2022.112170 001025444 0247_ $$2ISSN$$a0927-0248 001025444 0247_ $$2ISSN$$a1879-3398 001025444 0247_ $$2WOS$$aWOS:000916593900001 001025444 037__ $$aFZJ-2024-02896 001025444 082__ $$a620 001025444 1001_ $$00000-0003-0379-1816$$aYin, Yanting$$b0$$eCorresponding author 001025444 245__ $$aRole of headspace environment for phase change carbonates on the corrosion of stainless steel 316L: High temperature thermal storage cycling in concentrated solar power plants 001025444 260__ $$aAmsterdam [u.a.]$$bNH, Elsevier$$c2023 001025444 3367_ $$2DRIVER$$aarticle 001025444 3367_ $$2DataCite$$aOutput Types/Journal article 001025444 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714736098_31336 001025444 3367_ $$2BibTeX$$aARTICLE 001025444 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001025444 3367_ $$00$$2EndNote$$aJournal Article 001025444 520__ $$aThe mechanisms leading to corrosion in stainless steel containments for thermal energy storage through phase change materials, such as carbonates and chlorides, arecrucial for understanding the degradation of these steel alloys. A comprehensive study of this area will allow for down-selection of materials suitable for solar thermalenergy storage (TES) operation at an elevated temperature range.Samples of stainless steel (SS) 316L were subjected to a cyclic heat environment of 550–750 ◦C in air and argon headspace environments, in the presence of acarbonate salt phase change material (PCM). A series of complementary microscopy, spectroscopy and diffractometry analytical techniques were applied to thecorroded SS316L. Corrosion rate, interface formation and chemical products with respect to thermal cycling are presented with associated degradation mechanismexplained and comparisons are made among different gas environments and varied immersion conditions.In the PCM under ambient air conditions, steel surfaces were mainly corroded by the penetration of oxidants from air, such as H2O or O2, along grain boundaries.SS316L samples demonstrated more severe degradation when exposed to air with a small fraction of PCM vapour present compared to when they were exposed toliquid or solid PCM. Cycling in Ar resulted in less corrosion in samples as opposed to when they were exposed to an air environment. In an Ar environment corrosionis driven via the formation of chromite, while the SS316L showed a less degradation when exposed to Ar with a small fraction of PCM vapour compared to when itwas immersed in PCM. The mechanisms for degradation in air and in Ar are common in that the corrosion products of Cr and Ni dissolve in the PCM thus removingany layer that could protect against corrosion.The present study provides insight into corrosion of stainless-steel when exposed to carbonate salts, in air and inert gas environments, and contributes to down-selection of materials for solar thermal energy storage. 001025444 536__ $$0G:(DE-HGF)POF4-1242$$a1242 - Concentrating Solar Power (CSP) (POF4-124)$$cPOF4-124$$fPOF IV$$x0 001025444 536__ $$0G:(DE-HGF)POF4-1243$$a1243 - Thermal Energy Storage (POF4-124)$$cPOF4-124$$fPOF IV$$x1 001025444 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001025444 7001_ $$0P:(DE-HGF)0$$aRumman, Raihan$$b1 001025444 7001_ $$00000-0001-6286-0071$$aSarvghad, Madjid$$b2 001025444 7001_ $$00000-0003-2746-1766$$aBell, Stuart$$b3 001025444 7001_ $$00000-0001-5097-8937$$aOng, Teng-Cheong$$b4 001025444 7001_ $$0P:(DE-Juel1)188539$$aJacob, Rhys$$b5 001025444 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b6 001025444 7001_ $$00000-0002-8201-9877$$aFlewell-Smith, Ross$$b7 001025444 7001_ $$0P:(DE-HGF)0$$aSheoran, Shane$$b8 001025444 7001_ $$0P:(DE-HGF)0$$aSeverino, John$$b9 001025444 7001_ $$0P:(DE-HGF)0$$aBelusko, Martin$$b10 001025444 7001_ $$0P:(DE-HGF)0$$aBruno, Frank$$b11 001025444 7001_ $$0P:(DE-HGF)0$$aWill, Geoffrey$$b12 001025444 7001_ $$0P:(DE-HGF)0$$aSteinberg, Theodore A.$$b13 001025444 7001_ $$0P:(DE-HGF)0$$aLewis, David A.$$b14 001025444 7001_ $$0P:(DE-HGF)0$$aAndersson, Gunther G.$$b15$$eCorresponding author 001025444 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2022.112170$$gVol. 251, p. 112170 -$$p112170 -$$tSolar energy materials & solar cells$$v251$$x0927-0248$$y2023 001025444 909CO $$ooai:juser.fz-juelich.de:1025444$$pVDB 001025444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188539$$aForschungszentrum Jülich$$b5$$kFZJ 001025444 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern 001025444 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1242$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0 001025444 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1243$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x1 001025444 9141_ $$y2024 001025444 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL ENERG MAT SOL C : 2022$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22 001025444 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL ENERG MAT SOL C : 2022$$d2023-10-22 001025444 920__ $$lno 001025444 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 001025444 980__ $$ajournal 001025444 980__ $$aVDB 001025444 980__ $$aI:(DE-Juel1)IEK-2-20101013 001025444 980__ $$aUNRESTRICTED 001025444 981__ $$aI:(DE-Juel1)IMD-1-20101013