001     1025444
005     20250203103243.0
024 7 _ |a 10.1016/j.solmat.2022.112170
|2 doi
024 7 _ |a 0927-0248
|2 ISSN
024 7 _ |a 1879-3398
|2 ISSN
024 7 _ |a WOS:000916593900001
|2 WOS
037 _ _ |a FZJ-2024-02896
082 _ _ |a 620
100 1 _ |a Yin, Yanting
|0 0000-0003-0379-1816
|b 0
|e Corresponding author
245 _ _ |a Role of headspace environment for phase change carbonates on the corrosion of stainless steel 316L: High temperature thermal storage cycling in concentrated solar power plants
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b NH, Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714736098_31336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The mechanisms leading to corrosion in stainless steel containments for thermal energy storage through phase change materials, such as carbonates and chlorides, arecrucial for understanding the degradation of these steel alloys. A comprehensive study of this area will allow for down-selection of materials suitable for solar thermalenergy storage (TES) operation at an elevated temperature range.Samples of stainless steel (SS) 316L were subjected to a cyclic heat environment of 550–750 ◦C in air and argon headspace environments, in the presence of acarbonate salt phase change material (PCM). A series of complementary microscopy, spectroscopy and diffractometry analytical techniques were applied to thecorroded SS316L. Corrosion rate, interface formation and chemical products with respect to thermal cycling are presented with associated degradation mechanismexplained and comparisons are made among different gas environments and varied immersion conditions.In the PCM under ambient air conditions, steel surfaces were mainly corroded by the penetration of oxidants from air, such as H2O or O2, along grain boundaries.SS316L samples demonstrated more severe degradation when exposed to air with a small fraction of PCM vapour present compared to when they were exposed toliquid or solid PCM. Cycling in Ar resulted in less corrosion in samples as opposed to when they were exposed to an air environment. In an Ar environment corrosionis driven via the formation of chromite, while the SS316L showed a less degradation when exposed to Ar with a small fraction of PCM vapour compared to when itwas immersed in PCM. The mechanisms for degradation in air and in Ar are common in that the corrosion products of Cr and Ni dissolve in the PCM thus removingany layer that could protect against corrosion.The present study provides insight into corrosion of stainless-steel when exposed to carbonate salts, in air and inert gas environments, and contributes to down-selection of materials for solar thermal energy storage.
536 _ _ |a 1242 - Concentrating Solar Power (CSP) (POF4-124)
|0 G:(DE-HGF)POF4-1242
|c POF4-124
|f POF IV
|x 0
536 _ _ |a 1243 - Thermal Energy Storage (POF4-124)
|0 G:(DE-HGF)POF4-1243
|c POF4-124
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rumman, Raihan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sarvghad, Madjid
|0 0000-0001-6286-0071
|b 2
700 1 _ |a Bell, Stuart
|0 0000-0003-2746-1766
|b 3
700 1 _ |a Ong, Teng-Cheong
|0 0000-0001-5097-8937
|b 4
700 1 _ |a Jacob, Rhys
|0 P:(DE-Juel1)188539
|b 5
700 1 _ |a Liu, Ming
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Flewell-Smith, Ross
|0 0000-0002-8201-9877
|b 7
700 1 _ |a Sheoran, Shane
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Severino, John
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Belusko, Martin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Bruno, Frank
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Will, Geoffrey
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Steinberg, Theodore A.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lewis, David A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Andersson, Gunther G.
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1016/j.solmat.2022.112170
|g Vol. 251, p. 112170 -
|0 PERI:(DE-600)2012677-3
|p 112170 -
|t Solar energy materials & solar cells
|v 251
|y 2023
|x 0927-0248
909 C O |o oai:juser.fz-juelich.de:1025444
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188539
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1242
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1243
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL ENERG MAT SOL C : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL ENERG MAT SOL C : 2022
|d 2023-10-22
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21