001025448 001__ 1025448
001025448 005__ 20250204113841.0
001025448 0247_ $$2doi$$a10.1103/PhysRevD.109.074508
001025448 0247_ $$2ISSN$$a2470-0010
001025448 0247_ $$2ISSN$$a2470-0037
001025448 0247_ $$2ISSN$$a2470-0029
001025448 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02900
001025448 0247_ $$2WOS$$aWOS:001224338600002
001025448 037__ $$aFZJ-2024-02900
001025448 082__ $$a530
001025448 1001_ $$0P:(DE-Juel1)185942$$aRodekamp, Marcel$$b0$$eCorresponding author
001025448 245__ $$aMoments of nucleon unpolarized, polarized, and transversity parton distribution functions from lattice QCD at the physical point
001025448 260__ $$aRidge, NY$$bAmerican Physical Society$$c2024
001025448 3367_ $$2DRIVER$$aarticle
001025448 3367_ $$2DataCite$$aOutput Types/Journal article
001025448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718704014_10321
001025448 3367_ $$2BibTeX$$aARTICLE
001025448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025448 3367_ $$00$$2EndNote$$aJournal Article
001025448 520__ $$aThe second Mellin moments ⟨x⟩ of the nucleon’s unpolarized, polarized, and transversity parton distribution functions are computed. Two lattice QCD ensembles at the physical pion mass are used: these were generated using a tree-level Symanzik-improved gauge action and 2+1 flavor tree-level improved Wilson Clover fermions coupling via 2-level HEX-smearing. The moments are extracted from forward matrix elements of local leading twist operators. We determine renomalization factors in RI-(S)MOM and match to $\overline{MS}$ at scale 2 GeV. Our findings show that operators that exhibit vanishing kinematics at zero momentum can have significantly reduced excited-state contamination. The resulting polarized moment is used to quantify the longitudinal contribution to the quark spin-orbit correlation. All our results agree within two sigma with previous lattice results.
001025448 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001025448 536__ $$0G:(NRW)NW21-024-A$$aNRW-FAIR (NW21-024-A)$$cNW21-024-A$$x1
001025448 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025448 7001_ $$00000-0002-0472-8862$$aEngelhardt, Michael$$b1
001025448 7001_ $$00000-0003-1978-9614$$aGreen, Jeremy R.$$b2
001025448 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b3
001025448 7001_ $$0P:(DE-HGF)0$$aLiuti, Simonetta$$b4
001025448 7001_ $$00000-0003-1034-1004$$aMeinel, Stefan$$b5
001025448 7001_ $$0P:(DE-HGF)0$$aNegele, John W.$$b6
001025448 7001_ $$00000-0003-1138-7581$$aPochinsky, Andrew$$b7
001025448 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b8
001025448 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.109.074508$$gVol. 109, no. 7, p. 074508$$n7$$p074508$$tPhysical review / D$$v109$$x2470-0010$$y2024
001025448 8564_ $$uhttps://juser.fz-juelich.de/record/1025448/files/PhysRevD.109.074508.pdf$$yOpenAccess
001025448 8564_ $$uhttps://juser.fz-juelich.de/record/1025448/files/PhysRevD.109.074508.gif?subformat=icon$$xicon$$yOpenAccess
001025448 8564_ $$uhttps://juser.fz-juelich.de/record/1025448/files/PhysRevD.109.074508.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025448 8564_ $$uhttps://juser.fz-juelich.de/record/1025448/files/PhysRevD.109.074508.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025448 8564_ $$uhttps://juser.fz-juelich.de/record/1025448/files/PhysRevD.109.074508.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025448 909CO $$ooai:juser.fz-juelich.de:1025448$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185942$$aForschungszentrum Jülich$$b0$$kFZJ
001025448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b3$$kFZJ
001025448 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001025448 9141_ $$y2024
001025448 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-02-05
001025448 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-02-05
001025448 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025448 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-02-05
001025448 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025448 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
001025448 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-02-05
001025448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2022$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001025448 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV D : 2022$$d2024-12-10
001025448 920__ $$lno
001025448 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001025448 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x1
001025448 980__ $$ajournal
001025448 980__ $$aVDB
001025448 980__ $$aI:(DE-Juel1)JSC-20090406
001025448 980__ $$aI:(DE-Juel1)CASA-20230315
001025448 980__ $$aUNRESTRICTED
001025448 9801_ $$aFullTexts