001025512 001__ 1025512
001025512 005__ 20240819204157.0
001025512 037__ $$aFZJ-2024-02913
001025512 1001_ $$0P:(DE-Juel1)187474$$aOevermann, Steffen$$b0$$ufzj
001025512 1112_ $$aAdvanced Battery Power 2024$$cMünster$$d2024-04-10 - 2024-04-11$$wGermany
001025512 245__ $$aCombinations of polymer-based cathode and electrolyte materials for quasi-solid organic radical batteries enabling high current density applications
001025512 260__ $$c2024
001025512 3367_ $$033$$2EndNote$$aConference Paper
001025512 3367_ $$2BibTeX$$aINPROCEEDINGS
001025512 3367_ $$2DRIVER$$aconferenceObject
001025512 3367_ $$2ORCID$$aCONFERENCE_POSTER
001025512 3367_ $$2DataCite$$aOutput Types/Conference Poster
001025512 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1724055387_9734$$xAfter Call
001025512 520__ $$aIn recent years, organic radical polymer-based batteries (ORBs) have attracted substantial interest and attention, primarily attributed to their remarkable features including printability and rapid discharge capabilities. The latter is bestowed by organic redox-active polymers (ORP) as pivotal constituents that afford prompt and reversible redox reactions. High-power densities of current ORBs are particularly interesting in the frame of so-called “Internet of Things” (IoT) devices that typically discharge with high currents and short-duration pulse loads for data transmission. Nevertheless, high current densities could be a strong burden of the cells and necessitate close attention to safety aspects of the battery materials. Exploitation of many liquid electrolytes, in view of high pulsed experiments, introduces inherent safety concerns due to flammability of components. Here, a polymer-based cell chemistry may be safer due to non-volatility and higher viscosity that eventually prevent hazards even upon mechanical abuse of the cells.In the present study, the suitability of selected solid and quasi-solid polymer electrolytes for operation with PTMA cathodes (Qtheo = 111 mAh g−1) and lithium anodes, respectively, is critically evaluated. Solid polymer electrolytes may be afflicted by challenges associated with poor electrical contacts, exhibiting unfavorably large cell resistances, whereas the incorporation of quasi-solid polymer electrolytes that comprise flowable components allows for establishing good electrochemical contacts at electrolyte-electrode interfaces. A carbonate-based quasi-solid polymer electrolyte showcases competitive electrochemical performances, as demonstrated by initial specific discharge capacities of more than 82 mAh g−1 at rates of up to 1C (0.1 mAh) and by successful durability of the system, even after repeated pulse discharges. The obtained insights from this study are significant towards designing highly competitive solid ORBs, also promoting exploitation of more sustainable and safer materials, in this way paving a way towards cell concepts for greener IoT applications.
001025512 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025512 536__ $$0G:(GEPRIS)422726248$$aDFG project 422726248 - SPP 2248: Polymer-basierte Batterien (422726248)$$c422726248$$x1
001025512 7001_ $$0P:(DE-Juel1)176524$$aChiou, Min-Huei$$b1$$ufzj
001025512 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
001025512 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b3$$eCorresponding author$$ufzj
001025512 909CO $$ooai:juser.fz-juelich.de:1025512$$pVDB
001025512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187474$$aForschungszentrum Jülich$$b0$$kFZJ
001025512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176524$$aForschungszentrum Jülich$$b1$$kFZJ
001025512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
001025512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b3$$kFZJ
001025512 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025512 9141_ $$y2024
001025512 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025512 980__ $$aposter
001025512 980__ $$aVDB
001025512 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025512 980__ $$aUNRESTRICTED
001025512 981__ $$aI:(DE-Juel1)IMD-4-20141217