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ABSTRACT

Variational autoencoder (VAE)-based representation learning algorithms are explored for their capability to disentangle tokamak size
dependence from other dependencies in a dataset of thousands of observed pedestal electron density and temperature profiles from JET and
ASDEX Upgrade tokamaks. Representation learning aims to establish a useful representation that characterizes the dataset. In the context of
magnetic confinement fusion devices, a useful representation could be considered to map the high-dimensional observations to a manifold
that represents the actual degrees of freedom of the plasma scenario. A desired property for these representations is organization of the infor-
mation into disentangled variables, enabling interpretation of the latent variables as representations of semantically meaningful characteristics
of the data. The representation learning algorithms in this work are based on VAE that encodes the pedestal profile information into a
reduced dimensionality latent space and learns to reconstruct the full profile information given the latent representation. Attaching an auxil-
iary regression objective for the machine control parameter configuration, broadly following the architecture of the domain invariant varia-
tional autoencoder (DIVA), the model learns to associate device control parameters with the latent representation. With this multimachine
dataset, the representation does encode density scaling with device size that is qualitatively consistent with Greenwald density limit scaling.
However, if the major radius of the device is given through a common regression objective with the other machine control parameters, the
latent state of the representation struggles to clearly disentangle the device size from changes of the other machine control parameters. When
separating the device size as an independent latent variable with dedicated regression objectives, similar to separation of domain and class
labels in the original DIVA publication, the latent space becomes well organized as a function of the device size.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177005

I. INTRODUCTION

The standard high-performance tokamak scenarios are based on
the high-confinement mode (H-mode) operation with a self-
organized transport barrier and plasma pedestal at the edge.1,2 As the

heat transport in tokamak core plasmas is generally observed to be
stiff, showing strong increase with temperature gradients exceeding a
critical value, the overall achievable plasma performance becomes
directly dependent on the boundary condition provided by the pedestal,
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such as the pedestal top pressure, pped. For example, simulations for
ITER plasmas indicate fusion power to scale as p2ped.

3 Furthermore, in
future fusion reactors, these high-performance pedestals must be
compatible with the necessary power exhaust measures to guarantee
sufficiently long component duty cycles.4 However, due to the differ-
ent scalings of the pedestal and power exhaust physics from present-
day fusion devices to reactor-scale facilities, a present-day fusion
device cannot conclusively demonstrate reactor-relevant integration
of high-performance pedestal with a power exhaust solution.
Therefore, accurate and fast predictions for pedestal plasmas are
needed to design and operate the future tokamak fusion reactors.

Due to the multiple relevant physical processes, and spatial and
temporal scales, predicting pedestal plasma states is extremely challeng-
ing, and pedestal transport and stability are very active topics of
research.5–9 Hence, reduced models assuming MHD-constrained ped-
estal pressure profiles provide presently the standard approach for pro-
jecting pedestal performance between scenarios and devices.10–13 Even
though these models have been very successful in predicting pedestal
pressures in many presently operating tokamaks, such a reduced model
approach does increase the prediction risk when extrapolating to a new
domain, such as was observed when the carbon wall at JET was
changed to the ITER-like wall,2 or when scaling the device size toward
the reactor-scale devices and integrating radiative power exhaust to the
pedestal solution. On the other hand, a more complete, high physics
fidelity predictive model for pedestal and core-edge integration would
be expected to be computationally prohibitively demanding for agile
design optimization tasks or real-time and control applications.
Advancement of deep learning algorithms for high-performance com-
puters has opened a path to a data-driven approach to overcome these
gaps in predictive capability and model throughput.14–16

In this work, representation learning algorithms are explored for
pedestal profile measurements from the JET and ASDEX Upgrade
(AUG) tokamaks.17 Representation learning algorithms aim to learn a
useful representation that characterizes the training data. In the context
of magnetic confinement fusion devices, a useful representation learn-
ing algorithm could be considered to compress the high-dimensional
experimental observations to a lower-dimensional space that represents
the actual degrees of freedom of the plasma scenarios, such that the
high-dimensional observations can be reconstructed with little loss
from the low-dimensional representation. More generally, state repre-
sentation learning (SRL) algorithms aim to learn representations that
are in low dimension, evolve in time, and are influenced by actions of
an agent.17 There could be several attractive applications for such repre-
sentations, including reactor and scenario design by supplementing
reduced model assumptions in systems codes with fast, high-fidelity
integrated scenario predictions and allowing computationally efficient
optimization of feed forward scenario trajectories. Furthermore, such
approaches could flexibly leverage previous and current information
from the system to essentially open a pathway toward plasma scenario
digital twins with plasma state awareness and enable agility for timely
and informed decision, similar to Kalman filtering in control applica-
tions.18 In this work, the representation learning algorithms are based
on variational autoencoders (VAE).19 Similar approaches have been
previously discussed, for example, in the context of divertor detachment
models,20 pedestals,21 and disruption predictions.22

Building on top of the previous study by Kit et al.,21 the capabili-
ties of these models to infer machine size scaling in large databases of

experimentally observed pedestal plasmas in JET and AUG are investi-
gated. One of the primary challenges of data-driven algorithms is that
generally these are not expected to extrapolate beyond the data that
were used for training the model. This work aims to address this chal-
lenge by investigating methods to disentangle the learned representa-
tion of the latent variable models into machine independent and
dependent features. Theoretically, the machine independent features
can extract the information that extrapolates between fusion devices of
various scales. A related study by Kit et al.23 investigates state represen-
tation learning algorithms that aim to capture the dynamical evolution
of the plasmas by training a forward model together with the
representation.

II. DATASET

The data used to explore the deep learning models in this work
originate from experimental measurements of outer midplane (OMP)
electron density, ne, and temperature, Te, profiles. For JET, these are
obtained from the high-resolution Thomson scattering (HRTS) diag-
nostic,24 and for AUG, the profiles produced by the integrated data
analysis (IDA) were used.25 The HRTS measurements are used for JET
without including profile fits and dedicated instrument function
deconvolution procedures, such that a certain level of profile smearing
is present in the data.26 Only ITER-like wall (ILW) JET pulse numbers
(JPN) are included in this work, which are all obtained after the
improvement of the optical design of the laser input system. Following
the improvement of the optical design, the profile smearing caused by
the instrument function was reduced to a level of a relatively small cor-
rection rather than substantially changing the profile gradient and
width.26 The individual profile measurements are assumed to have
negligibly small measurement error relative to the plasma fluctuation
between individual time slices. This is expected to be a well-justified
assumption for the plasmas in this study.

It is also quite usual in the HRTS measurements to see relatively
high scatter in Te values in the scrape-off layer (SOL) as measured ne
values are low. To avoid feeding these large scatter Te values to the
deep learning algorithms, a heuristic approach was taken such that
for any HRTS measurements, where ne is lower than 5� 1018 m�3

and Te is higher than 50 eV, the Te value is replaced by Te; corr ¼ ðne
� 10�18 m�3Þ � 10 eV. Such a procedure biases the data at low Te val-
ues in the SOL. However, for the time being this was considered a bet-
ter approach than confusing the model with a large scatter ranging
between a few eV and values beyond keV, when it is known from SOL
physics that the expected values are significantly below keV. In future,
the plan is to improve these SOL corrections with information from
SOL diagnostics and boundary models.

It is also well known that the magnetic equilibrium reconstruc-
tion is often not sufficiently accurate to locate the separatrix within the
profile sufficiently well considering the profile gradient scale lengths.
To obtain a common separatrix alignment procedure for the investi-
gated plasmas, the separatrix is shifted to the location where Te equals
100 eV for all plasmas for both JET and AUG, which is of the order of
the expected values for conduction-limited SOL transport in H-mode
conditions. However, this is an oversimplification and will be reeval-
uated in future studies, as all dependencies on power densities, SOL
conditions, and device sizes are neglected by this approach.
Nevertheless, such a procedure does align the separatrix approximately
to the location where the radially steep gradients of the pedestal Te
begin and provides a pragmatic approach to align 104 profiles with a
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batch algorithm. Reaching such level of robustness with a more sophis-
ticated separatrix alignment algorithms is expected to require substan-
tially more work than was allocated here. Furthermore, varying Te; SEP

within 20%–30%, as observed in SOL simulations of deuterium and
nitrogen injection scans at JET,27 does not affect the determination of
the key pedestal parameters significantly.28 It is acknowledged that by
doing this, the original uncertainty in the equilibrium reconstruction is
replaced with the physics uncertainty of the separatrix realignment
procedure. However, the latter is considered more attractive here as it
provides a controlled bias to the data that is consistent between the
data points, whereas the equilibrium reconstruction uncertainty mag-
nitude and direction is expected to be more uncertain between the
data points when combining thousands of measured profiles from
more than one fusion devices. All profiles were mapped to a common
normalized poloidal flux, WN , grid of 30 points uniformly spaced
between 0.85 and 1.05.

Only deuterium plasmas without significant impurity seeding,
resonant magnetic perturbations, kicks, or pellets were considered in
this study. For JET, the plasma discharge numbers are selected from
the JET pedestal database,2 whereas for AUG, the algorithm selects
plasma discharges that have been flagged as useful in the operating
journal, which in practice only filters out plasma discharges that failed.
Furthermore, only plasma time slices with core Te exceeding 2 keV are
selected. The total resulting number of plasma discharges in the set of
data used for training the deep learning algorithms is 1280 for JET and
3724 for AUG. From these plasmas, time periods where the total heat-
ing power exceeds 3MW for JET and 2MW for AUG were selected
for analysis. To reduce the size of the dataset, the total database of mea-
sured profiles was downsampled by randomly selecting ten time slices
from each investigated time window as well as choosing the three time
slices with the highest pedestal pressure within each time window. The
intention of the former approach is to approximately retain the statisti-
cal distribution of the full data while downsampling, whereas the
intention of the latter is to make sure that the highest-pressure profiles
right before edge localized modes (ELMs) are retained in the training
database. The downsampling procedure also helps to balance the data-
set as there are significantly more profiles in a given AUG time win-
dow relative to a given JET time window. Since there is no effort to
filter ELMs or identify ELM cycles in this study, the resulting scatter in
the profile data is relatively large and encoded as stochastic variation
by the model in this study. In future studies, methods to identify frac-
tions of ELM cycles automatically from the data will be investigated.
The dataset reduction is expected to help with agile algorithm testing.
The total resulting number of plasma time slices is 55 087, as the aver-
age number of time slices retained for a plasma discharge is a bit more
than 11.

The following input machine control parameters were selected
for the model in this work (Table I): (1) toroidal magnetic field, BT (2)
safety factor at 95% flux surface, q95, (3) total heating power normal-
ized by the Martin LH-threshold scaling,29 PTOT=PLH, (4) total deute-
rium injection rate, DTOT, (5) major radius, R, (6) aspect ratio,
A ¼ R=a, where a is the minor radius, (7) elongation, j, (8) upper tri-
angularity, du, and (9) lower triangularity, dl, of the plasma. Even
though the Martin LH-threshold scaling might not provide a fully
accurate LH-threshold value for all plasmas considered in this study,
the scaling provides a pragmatic approach to normalize the total heat-
ing power as two devices of different scales are considered. As can be

seen in Table I, the average plasma in the investigated database is an
H-mode at about 2.4 T with a moderately low q95 of 3.5–5.0 and mod-
erately low upper triangularity of 0.1–0.2. Figure 1 illustrates the distri-
butions of the ne and Te values near the pedestal top in this dataset.
The dataset used for training the model is split into training, validation,
and test sets in proportions of 70%, 20%, and 10%. The data are fur-
ther normalized by subtracting the mean and dividing by the standard
deviation of the training set. In addition to this, two representative
plasmas that have been documented in previous publications13,30 are
specifically selected to be retained outside the dataset used for training
the model and applied for prediction testing. In the remainder of this
manuscript, these will be called the holdout plasmas. For AUG, the
plasma discharge number 33 173 was selected, which is further dis-
cussed in Ref. 13. For JET, the plasma discharge number 96 202 was
selected, which is further discussed in Ref. 30. The representative input
machine control parameters for the two holdout plasma discharges are
shown in Table II. These plasmas represent relatively standard opera-
tional points and, therefore, test the model capability in interpolating
between previously observed points within the data distribution.

TABLE I. Overall ranges, means, and standard deviations, r, of the applied machine
control inputs in the deep learning model training in this work. jBTj stands for the
absolute magnitude of the toroidal magnetic field in units of Tesla, jq95j for the abso-
lute value of the safety factor at 95% flux surface, PTOT=PLH for the total heating
power normalized with the Martin LH-threshold scaling,29 DTOT for the total deuterium
gas injection rate in units of 1022 e/s, R for the major radius of the center of the
plasma in units of meters, A ¼ R=a for the aspect ratio, j for the elongation, du for
the upper triangularity, and dl for the lower triangularity of the plasma.

JET AUG

Parameter Min Max Mean r Min Max Mean r

jBTj (T) 1.0 3.7 2.4 0.5 1.5 3.1 2.4 0.3
jq95j 2.4 9.2 3.5 0.5 2.3 12.0 5.0 1.1
PTOT=PLH 0.2 7 1.9 0.8 0.5 12 2.6 1.3
DTOT (1022 e/s) 0 19 2.3 2.2 0 10 0.8 1.0
R (m) 2.7 3.0 2.9 0.02 1.5 1.7 1.61 0.01
A ¼ R=a 2.8 3.4 3.1 0.1 2.7 3.8 3.3 0.1
j 1.27 1.83 1.67 0.04 1.09 2.0 1.67 0.06
du 0.05 0.51 0.20 0.08 0.0 0.55 0.13 0.09
dl 0.04 0.50 0.31 0.04 0.0 0.59 0.42 0.07

FIG. 1. ne and Te distributions near the pedestal top in the dataset. The y axis rep-
resents the number of samples in the bin.
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III. MACHINE SIZE REGRESSION
IN A REPRESENTATION LEARNING MODEL

Algorithms to learn a representation with tokamak size regres-
sion are explored. All approaches are based on the variational autoen-
coder (VAE),19 which encodes the representation for the observed
plasma profile information in this work (Fig. 2). In Sec. III A, a
standard VAE is first trained with the dataset to demonstrate that
the representation learning model has sufficient capacity to recon-
struct the profiles well. Once this is demonstrated, Sec. III B explores
an approach similar to domain invariant variational autoencoder
(DIVA)31 to connect the machine control configurations with the
learned representation, building on top of the previous work by Kit
et al.21 However, as will be discussed in Sec. III B, when connecting
the device size together with the machine control parameters to the
same auxiliary learning objective, the resulting device size regression
is mixed with changes of the other parameters. This leads to large
reconstruction error for the device size, indicating that the device
size-dependent features are not well disentangled from the size inde-
pendent features. Therefore, in Sec. III C, a separate latent space is
dedicated to the device size regression, which is observed to facilitate
disentangled encoding of the size-dependent features into this latent
variable.

A. VAE

A VAE is a generative model, defining a joint distribution over the
observed data, x, and latent variables, z, as phðx; zÞ ¼ pðzÞphðxjzÞ.
Learning representation of the data means to learn the posterior distri-
bution ph1ðzjxÞ that maps the observations to distributions of latent
variables. The generative side of the model aims to model the dataset, x,
as a conditional distribution given the latent representation, z; ph2ðxjzÞ.
In this work, this is implemented using encoder, qUðzjxÞ, and decoder,
ph2ðxjzÞ, distribution, parameterized by convolutional neural networks
(Fig. 2). The qUðzjxÞ represents an amortized variational approximation
of the intractable true posterior, ph1ðzjxÞ. The VAE model architecture
in this work is shown in Table III. The encoder consists of convolutional
layers that take the radial ne and Te profiles as input. The output from
the second convolutional layer is transformed into mean and standard
deviation of 12 latent variables through two dense layers. The decoder
consists of transposed convolutional layers. The last transposed convo-
lution layer provides two output channels, which are transformed into
two radial profiles of 30 points each through a dense layer.

The learning objective is to minimize the reconstruction error as
well as Kullback–Leibler (KL) divergence between the encoder distri-
bution and a given model prior, chosen here asN ð0; 1Þ,
L VAE ¼ �aobs:EqUðzjxÞ log phðxjzÞ½ � þ bpriorKL qUðzjxÞjjN ð0; 1Þð Þ:

(1)

The second term constraints the model to learn a latent represen-
tation that resembles a Gaussian hypersphere. This constraint aims to
regularize the learned representation toward continuity. The EqUðzjxÞ
stands for expectation of the loss integrated over the amortized vari-
ational approximations of the posterior. In practice, the reconstruc-
tion error is obtained by sampling a reconstruction from the VAE
latent posterior distribution and computing the mean squared error.

FIG. 2. Schematic illustration of the model components in this work. In Sec. III A, only the VAE component is active and only the global prior is applied to the latent space com-
ponents z. The global prior stands here for the chosen VAE prior of N ð0; 1Þ. There is no separation of the different components of z in the studies in Sec. III A. In Sec. III B,
the machine parameter regression model is activated. The device size, R, is provided among the other machine parameters. The colors indicate that the prior regression mod-
ule encodes a prior distribution for zmp. It should be noted here that the auxiliary regression module, qðyjzÞ, decodes the machine parameter configurations based on the zmp,
not based on the prior. In Sec. III C, the device size dependence is given a dedicated regression and latent space. The detailed network architectures are documented in
Tables III and VI. The dashed lines highlight that the regression model provided priors only apply to zmp or zsize. The global prior always applies to all components of z, but the
individual components have their own multipliers, b, in front of the term.

TABLE II. Representative machine control parameters for the two holdout plasma
discharges.

jBTj
(T) q95 PTOT=PLH

DTOT

(1022 e/s)
R
(m) A j du dl

AUG 2.45 4.1 3.5 0.9 1.62 3.3 1.65 0.07 0.46
JET 2.3 3.5 1.7 0.8 2.91 3.1 1.63 0.13 0.33
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bprior multiplier is used to control the strength of the KL constraint, as
motivated by the b-VAE by Higgins et al.32 Similarly, aobs: multiplier is
added in front of the reconstruction error to also adjust the strength of
the loss term. In addition to the standard objective in Eq. (1), a physics
regularization term is added to the objective function / bpressjjneTe

� n̂e T̂e jj2 to add a penalty if the reconstructed static pressure, n̂e T̂e ,
deviates from the measured static pressure, neTe. The intention is that
this term encourages reconstruction of physically mutually consistent
ne and Te profiles. Such a model was trained for 100 epochs with the
adam optimizer33 using a learning rate of 0.01 and batch size of 1024.
The loss multipliers are shown in Table IV. These hyperparameters
were manually selected based on manual testing of various hyperpara-
meter values. In future, a more careful hyperparameter optimization
studies will be performed. Figure 3 illustrates the reconstruction quality
for the holdout plasmas and their representative locations within a 2D
cut of the learned 12-dimensional latent representation. The overall
reconstruction errors are very small throughout the profiles, which
indicates that the present model setup has the necessary capacity to
represent the profiles in the investigated dataset (Table V).

Since there are no other learning objectives than the reconstruc-
tion error and the overall shape of the latent representation through
the KL constraint, the information may be entangled between the
latent variables in this learned representation. To generate a useful rep-
resentation, a desired property is organization of the information into
disentangled latent variables, enabling interpretation of the latent vari-
ables as representations of certain, semantically meaningful character-
istics of the dataset.31,34–37 To achieve disentangled latent variables,
semi-supervision of the learning task is explored.31,35,37 By introducing
auxiliary learning objectives to a selection of the latent variables, the
learning algorithm is given an incentive to encode the semantic

TABLE III. The VAE model architecture. The inputs are experimentally measured 1D
profiles of ne and Te mapped to a static WN grid of 30 points uniformly spaced
between 0.85 and 1.05. These are the two channels with 30 points each that enter
the convolutional layers at the first level of the encoder. Conv. and Transp. Conv.
stand for 1D convolution and transposed convolution layers. The convolution layer
parameters are (number of input channels, number of output channels, kernel width,
stride). The encoder to state has two components as the VAE parameterize the
mean and standard deviation of distribution. Since the last Trans. Conv. layer outputs
two channels, the last dense layer transforms the output to two spatial profiles of
30 points each.

Model component Layers Activation

Encoder Conv. (2, 4, 4, 2) ReLU
Conv. (4, 8, 4, 2) None

Encoder to latent state Dense (48, 12), Dense (48, 12) None
Decoder Dense (12, 48) None

Transp. Conv. (48, 16, 5, 3) ReLU
Transp. Conv. (16, 8, 5, 3) ReLU
Transp. Conv. (8, 4, 6, 3) ReLU
Transp. Conv. (4, 2, 6, 3) ReLU

Output Dense (165, 30) None

FIG. 3. Example of VAE reconstructed (red) ne and Te profiles for selected measured time slices (black dots) of the holdout plasma discharges and their representative loca-
tions for a 2D cut of the latent space. The selection of latent dimensions 3 and 7 is arbitrary here and any other 2D cut could have been selected equally well. The color coding
of the latent space indicates the inferred pedestal top electron density value. Since the latent space color coding is established for an average latent space representation for
the profiles within the training set, the exact pedestal density values are not same as those for the reconstructed holdout plasma discharges.

TABLE IV. Loss hyperparameters in the VAE model.

aobs: bprior bpress

100 0.01 0.01
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information related to the learning objective to those latent variables.
Attaching the auxiliary learning objective to the machine parameter
configuration of the plasma discharge, a connection is also established
between the machine configuration and the state of the plasma. The
first approach, discussed in Sec. III B, follows broadly the structure of
the domain invariant variational autoencoder (DIVA).31 In Sec. III C,
this approach is extended by separating a dedicated latent space to rep-
resent the scaling with the machine size. The latter approach is actually
closer to the original DIVA publication, where the machine size can be
considered to represent a class label and the machine parameter con-
figuration a domain label. However, the machine size in this work is
treated as a continuous rather than discrete variable.

B. DIVA

The original DIVA publication by Ilse et al. discusses splitting the
latent space of a VAE to three sub-spaces: (1) domain, (2) class, and
(3) residual variations.31 The motivation is to disentangle the latent
representation to domain variant and invariant features, such that the
domain invariant features could potentially be applicable to new, pre-
viously unseen domains. In this work, this approach is applied for JET
and AUG experimental data with the aim to learn a representation for
which certain latent features are independent of the device size.
Fundamentally, the idea is that if it is possible to disentangle the fea-
tures that are dependent and independent of the device size, these tools
could be used to infer fundamental device size scalings in the experi-
mental databases and potentially also to build machine learning mod-
els that are transferable to new device sizes with relatively small
amounts of training data at scale.

In this first test, all of the nine machine parameters, ymp (Table I),
considered in this study are given as an input to a prior regression dis-
tribution, pmp; priorðzmpjympÞ, parameterized via a fully connected neu-
ral network (Table VI). The learning objective [Eq. (1)] is modified by
a reconstruction loss for the machine parameter configuration and a
KL constraint between the prior regressor distribution and the VAE
posterior for the machine parameter latent space, qUðzmpjxÞ,

L DIVA-like ¼ L VAE � ampEqUðzmp jxÞ log qh;mpðympjzmpÞ
h i

þ bmpKLðqUðzmpjxÞjjpmp; priorðzmpjympÞÞ: (2)

This learning objective aims to encode information from the
machine parameter configuration into the latent variable, zy , together
with the observed ne and Te profile information. As the neural network
generated prior distribution depends conditionally on the machine
parameter configuration, the algorithm is given incentive to encode
such a latent representation that also conditionally depend on the
machine parameter configuration. Furthermore, the machine parame-
ter reconstruction objective also incentives the algorithm to encode
such a latent representation that the information content is sufficient

to reconstruct the machine parameter configuration. Therefore, corre-
lations with plasma state and machine parameters would be expected
to be preferentially encoded to zmp, while any residual variations
would be expected to be encoded to the residual stochastic part of the
latent space, zs. To retain the same latent space dimensionality as in
the initial VAE example, zmp ¼ 9 and zs ¼ 3 were selected in this
study. For the original VAE model, the only change is that for those
nine latent dimensions, the prior distribution is given primarily by the
neural network model rather than the static N ð0; 1Þ prior. For the
remaining three latent dimension, the prior is simply the static
N ð0; 1Þ. The chosen latent space dimensionality is small relative to the
dimensionality of the profiles, but not relative to the dimensionality of
the machine parameters. This is intended, as the machine parameters
are supposed to provide the independent control parameters of the sys-
tem. If this would be exactly the case, then one would not be able to
compress the information any more than is the dimensionality of the
control parameter vector. In practice, this is not the necessarily the case
as the experimental databases have cross-correlations within them.

The loss multipliers are shown in Table VII. The bpriormp stands
for a small static prior loss on N ð0; 1Þ applied for the machine
parameter latent space. This is a regularizing term in this model setup.
The multiplier value is set low as this loss should not dominate over
the prior regression loss for the model to work as intended. Overall,
these hyperparameters resulted from simple manual scan and repre-
sent values that lead to reasonable model performance. A more sys-
tematic hyperparameter optimization would probably improve the
model performance further but was not considered in this study.

Figure 4 illustrates prediction performance of the trained model
for the holdout plasmas. By providing the machine control parame-
ters of the holdout plasmas through the prior regression module,
a conditional distribution is obtained in the latent representation.

TABLE V. The mean absolute errors of the reconstructions for the test dataset. ne
values are in units of 1019 m�3, and the Te values are in units of eV. hi represents
profile integral, PED stands for pedestal top, and SEP for separatrix.

hnei hTei ne; PED Te;PED ne; SEP Te; SEP

0.1 12 0.1 19 0.1 1

TABLE VII. Loss hyperparameters in the DIVA model. The bprior mp stands for the
multiplier in front of the global prior term, while the bmp prior reg: stands for the multiplier
in front of the prior regression term.

aobs: amp bprior stoch: bpriormp bmp prior reg: bpress:

1000 500 0.5 0.000 01 1.0 0.01

TABLE VI. The architecture of the machine parameter prior regression and auxiliary
regression and their connection to the VAE latent space. The input dimensionality of
the machine parameter vector is nine. The latent space dimensionality allocated for
the prior regression is nine and the stochastic latent space is allocated three dimen-
sions, such that the total dimensionality of z is twelve and the structure of the VAE
(Table III) does not change other than the encoder to latent space layers being split
to two different latent spaces.

Model component Layers Activation

Prior regressor Dense (9, 30) ReLU
Dense (30, 30) ReLU
Dense (30, 48) None

Prior regressor to latent state Dense (48, 9), Dense (48, 9) None
Decoder Dense (9, 30) ReLU
Output Dense (30, 9) None
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This conditional distribution is showed with stars and error bars in
Fig. 4. From this conditional distribution, full profile samples can be
generated with the decoder of the VAE. As can be seen, the generated
profiles are broadly in line with the observations, although the detailed
profile shapes are not necessarily fully reproduced and the prediction
uncertainties are quite large. One of the leading reasons for both of
these shortcomings of the model is presumably the fact that ELM cycles
are averaged by the model in this work. Therefore, stochastic variation
below the ELM fluctuations would not be expected through the genera-
tive model with this model setup. In future studies, focus will be given
to more directly encode ELM information into the latent representa-
tion, which is expected to improve the prediction quality.

For a more quantitative performance test, mean absolute errors
for reconstructions and conditional generation or prediction for the
test set were calculated (Tables VIII and IX). There is no noticeable
loss of reconstruction accuracy in the VAE model even though some
of the VAE capacity is allocated for the additional training objectives
(Tables V and VIII). The conditional generation or prediction error is

about a factor of 5–10 larger than the reconstruction error (Table
VIII), which is expected as solely based on the machine parameters,
there is no information about the fraction of the ELM cycle at which
the target profile is measured. Considering this challenge, the predic-
tion error is also relatively small. Actually, compared to Fig. 4, it can be
seen that the prediction error is of the order of the standard deviation
of the predicted distribution, which is expected. Therefore, when pre-
dicting an individual time slice with this model, one would not expect
the model to be more accurate than this. Same arguments apply for
the reconstructions of the machine parameters (Table IX). In future,
further development of the model to encode information about the
ELM cycle is expected to reduce both the prediction error and the
machine parameter reconstruction error.

As a test of the capability of the generative model to predict the
impact of R on the pedestal ne and Te, the following experiment was con-
ducted. The machine parameter inputs were set to representative values
near the mean of the training set: jBT j ¼ 2:25 T, q95 ¼ 4:7, PTOT=PLH
¼ 2:4; DTOT ¼ 1022 e/s, A¼ 3.2, j ¼ 1:67, du ¼ 0:14, dl ¼ 0:4.

FIG. 4. Illustration of the performance of the DIVA-like model for the holdout plasma discharges and their respective locations in a 2D cut of the latent space, as predicted by
the machine parameter prior regression. The contour colors show the inferred pedestal ne (upper) and R (lower). The error bars illustrate one standard deviation of the distribu-
tion mapped by the prior regression module, and the profile uncertainties are obtained through collecting conditionally generated samples. The solid red lines in the profile fig-
ures show reconstructions for the means of the latent distributions. A few observed time slices are shown for each of the holdout plasmas. The reason to show multiple time
slices here is that those time slices represent the temporal fluctuation of the plasmas. When testing the prediction performance of the model, it is meaningful to compare the
predicted distribution (red shaded area) to the scatter of the experimentally observed profiles. In Fig. 3, the aim is to demonstrate the reconstruction capacity of the VAE for indi-
vidual time slices.

TABLE VIII. Mean absolute errors of the reconstructions and prediction for the test
dataset. ne values are in units of 1019 m�3 and the Te values are in units of eV. hi
represents profile integral, PED stands for pedestal top, and SEP for separatrix.

hnei hTei ne;PED Te;PED ne; SEP Te; SEP

Reconstruction 0.1 13 0.1 21 0.1 1
Prediction 0.8 97 0.9 152 0.8 5

TABLE IX. Mean absolute errors of the reconstructions of the machine parameters
for the test dataset. The names of the parameters and units are given the in caption
of Table I.

jBTj
(T) jq95j PTOT=PLH

DTOT

(1022 e/s)
R
(m) A j du dl

0.4 0.7 0.7 0.8 0.24 0.07 0.04 0.07 0.04
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Then, R was scanned from 1.6 to 2.9 m (Fig. 5). It is observed that the
model does encode a scaling of reduced pedestal density as R is
increased, which is consistent with the scaling of the empirical
Greenwald density limit in tokamaks,38 nGW ¼ Ip

pa2 / BT
R , where the lat-

ter relation assumes constant plasma shape and q95 when scaling the
device size. However, as can be observed from the reconstructed R,
the internal representation of the model is not fully consistent with the
scan of the major radius (Fig. 5). As there are more AUG time slices
than JET time slices in the training database, it seems that the average
representation is weighted toward smaller device sizes. As in this model
construction, all the machine parameters are encoded and recon-
structed through a common fully connected neural network, the
machine parameters end up being entangled with each other.
Therefore, even though the model does learn the correlation of reduc-
tion of average pedestal top ne with device size, this correlation is
mixed with changes of other parameters, such that the internal state of
the model is entangled. As a result, when the machine parameters are
reconstructed from latent distribution, the machine parameter recon-
struction model mixes the original drivers of the posterior latent distri-
bution, leading to large reconstruction error on the device size.
Therefore, although the results are already quite promising in terms of
connecting machine parameters to the learned representation, the
information organization is not yet quite as disentangled as would be
needed to fully disentangle the machine size dependence from the
other dependencies in the dataset. Therefore, in Sec. III C, a separate
latent space is dedicated for the machine size.

C. DIVA with dedicated latent space for device size

A dedicated latent space of dimensionality of one was allocated
for the machine size regression model. To retain the same latent space
dimensionality as previously, the latent space dimensions were set as
zmp ¼ 8; zsize ¼ 1, and zs ¼ 3. The machine parameter and size
regression architectures are similar to that presented in Table VI. The
primary difference is that the input, output, and latent space dimen-
sionality of the machine parameter regression are reduced to eight,
and the representative dimensionality for the size regression is one.

The loss is similar to Eq. (2) with the machine size reconstruction loss
and KL constraint separated from the other machine parameters. The
loss multipliers are shown in Table X. As before, these hyperpara-
meters are obtained through a manual search and a more systematic
hyperparameter optimization could potentially improve the model
performance further.

A clear qualitative feature that can be seen with the model setup
is that the R scaling is now well organized into latent dimension eight
(Fig. 6). As the latent dimension eight is scanned from 4 to �4, the
inferred tokamak major radius increases from mid-sized 1.5 m to large
3.0 m. Also, the Greenwald like density scaling can now clearly be seen
when comparing the upper and lower latent space contour plots in
Fig. 6, where the smaller device size is associated with higher pedestal
ne values.

As the model becomes more regularized through splitting of the
latent space, there is a small, less than factor of 2, increase in the VAE
reconstruction error (Tables VIII and XI). The prediction errors
remain almost the same between the models with and without the sep-
arate latent space for device size (Tables VIII and XI). For most of the
machine parameters, reconstruction errors remain the same with the
exception that the reconstruction error on R is reduced by a factor of
2, as might be expected (Tables IX and XII).

Finally, the test on the capability of the generative model to pre-
dict dependence of pedestal ne and Te on machine size shows that the
internal representation now captures the size dependence significantly
better (Figs. 5 and 6). As the input R approaches JET sized values, the
internal state also approaches these numbers, which was not the case
when R was mixed in the same latent space with the other machine
parameters (Figs. 5 and 6). Furthermore, similar tests were done by
scanning the size from the latent representation of each of the holdout
plasma discharges. When scanning from the AUG case, the depen-
dence was very similar to that observed in Fig. 7. From the JET case,
the dependence was significantly weaker, which indicates that further
research is needed to fully understand how the size dependence
emerges globally in the latent space.

IV. DISCUSSION

Variational autoencoder-based representation learning algo-
rithms are explored for datasets of thousands of experimentally
observed pedestal ne and Te profiles at JET and AUG tokamaks.
Representation learning aims to establish a useful representation that
characterizes the dataset. In the context of magnetic confinement
fusion devices, a useful representation could be considered to map the
high-dimensional observations to a lower-dimensional manifold that
represents the actual degrees of freedom of the plasma scenarios. In
this work, the capability of these algorithms to infer tokamak size
dependence in multimachine databases is investigated.

Using VAE-based representation learning models and following
broadly the architecture of DIVA to connect the machine parameter
configuration with the learned representation, the model learns joint

FIG. 5. Test of conditional generation for various device sizes while keeping other
input parameters constant. Upper row shows the reconstructed R, the dashed line
shows the line with no reconstruction error. The lower figure shows the predicted
ne; PED (black) and Te; PED (red).

TABLE X. Loss hyperparameters in the DIVA model with a dedicated latent space
for device size.

aobs: amp asize bprior stoch: bpriormp=size bmp=size prior reg: bpress:

1000 500 500 0.5 10�5 1.0 0.01
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probability distributions that associate a certain device size and
machine control configuration with a certain pedestal ne and Te. Since
ELM fluctuations are treated as stochastic variations of the profiles and
not taken into account in the model design, the prediction variances
for profiles and machine parameters remain quite large. Given this

shortcoming, the performances for predicting pedestal ne and Te pro-
files based on the machine control configuration and device size within
the test sets are quite good.

It was observed that when connecting the device size together
with the machine control parameters to a common regression

FIG. 6. Illustration of the performance of the DIVA-like model with the dedicated latent space for size dependence for the holdout plasma discharges and their respective loca-
tions in a 2D cut of the latent space, as predicted by the machine parameter prior regression. The contour colors show the inferred pedestal ne (upper) and R (lower). The error
bars illustrate one standard deviation of the distribution mapped by the prior regression module, and the profile uncertainties are obtained through collecting conditionally gener-
ated samples. The solid red lines in the profile figures show reconstructions for the means of the latent distributions. A few observed time slices are shown for each of the hold-
out plasmas. Latent dimension eight is associated with device size, but the y axis could have been plotted for any of the other machine parameter-dependent latent
dimensions, which do not have access to device size information directly.

TABLE XI. Mean absolute errors of the reconstructions and prediction for the test
dataset. ne values are in units of 1019 m�3 and the Te values are in units of eV. hi
represents profile integral, PED stands for pedestal top, and SEP for separatrix.

hnei hTei ne;PED Te;PED ne; SEP Te; SEP

Reconstruction 0.1 21 0.1 28 0.1 2
Prediction 0.8 98 0.9 151 0.7 5

TABLE XII. Mean absolute errors of the reconstructions of the machine parameters
for the test dataset. The names of the parameters and units are given the in caption
of Table I.

jBTFj
(T) jq95j PTOT=PLH

DTOT

(1022 e/s)
R
(m) A j du dl

0.4 0.7 0.7 0.7 0.14 0.07 0.04 0.06 0.04
FIG. 7. Test of conditional generation for various device sizes while keeping other
input parameters constant. Upper row shows the reconstructed R, and the dashed
line shows the line with no reconstruction error. The lower figure shows the pre-
dicted ne; PED (black) and Te; PED (red).
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objective and latent space, the model ended up entangling the machine
parameters within each other. As a result, conditional latent distribu-
tions with a certain device size were mixed with other device size and
machine parameter configurations. By separating the device size to a
dedicated regression objective and latent space, similar to separation of
domain and class labels in the original DIVA publication,31 the device
size information becomes well organized and disentangled from the
other machine parameters. This highlights the importance of properly
designing the learning algorithm structure appropriately to appropri-
ately encode the information into semantically meaningful latent
variables.

For these multimachine datasets, the representation does encode
density scaling with a device size that is qualitatively consistent with
Greenwald density limit scaling.38 Since the training dataset consists of
data from AUG and JET, it should be noted that there are no training
observations at values in between the two extremes. Therefore, for a
good fraction of the scan in Fig. 7, the model is interpolating in a
domain where there are no training data, and this interpolation seems
quite stable, which is not necessarily given when operating with over-
parameterized models capable for overfitting. The features that the
model learns to be independent of the device size could in principle
extrapolate beyond the training domain. In future studies, such inter-
polation and extrapolation performance could be explored by training
the model on JET and Tokamak �a Configuration Variable (TCV), for
example, and testing the interpolation performance for AUG, or
extrapolation performance by training on TCV and AUG and extrapo-
lating to JET. How much real data are needed at scale and whether
simulations can be used to supplement the real data at scale are inter-
esting research questions to be addressed in future.
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