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ABSTRACT

In this work, we demonstrate the utility of state representation learning applied to modeling the time evolution of electron density and
temperature profiles at ASDEX-Upgrade (AUG). The proposed model is a deep neural network, which learns to map the high dimensional
profile observations to a lower dimensional state. The mapped states, alongside the original profile’s corresponding machine parameters, are
used to learn a forward model to propagate the state in time. We show that this approach is able to predict AUG discharges using only a
selected set of machine parameters. The state is then further conditioned to encode information about the confinement regime, which yields
a simple baseline linear classifier, while still retaining the information needed to predict the evolution of profiles. We, then, discuss the poten-
tial use cases and limitations of state representation learning algorithms applied to fusion devices.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0174128

I. INTRODUCTION

We investigate the use of state representation learning to model
the time evolution of plasmas at ASDEX-Upgrade (AUG). As reviewed
in Ref. 1, state representation learning (SRL) focuses on learning low
dimensional features of an environment that evolve in time and is
influenced by actions. An SRL model posits a system’s state at a given
time, st , with observations, ot , which are noisy measurements of the
state. The state evolves under the influence of actions, leading to future
states stþ1, which can again be measured, otþ1. In this work, we con-
sider AUG to be the environment, in which actions, at 2 A, are made
at a time step t, where A is the action space. At AUG, actions are
“machine control parameters,” such as plasma current, magnetic field
strength, gas puffing rate, etc. The change in machine parameters
induces a change in the plasma state, st to stþ1. Full information of the
true plasma state is not accessible, but diagnostic systems, such as
Thomson scattering and reflectometry, provide partial and noisy

observations, ot 2 O, of the plasma state. Examples of machine
parameters and observations are depicted in Fig. 1.

The goal of this work is to investigate methods to learn a use-
ful representation of the AUG plasma state, st 2 S, with which we
can then learn a forward model, pðstþ1jst ; atÞ, to predict the evolu-
tion and dynamics of the plasma state. In this work, a useful state
representation is defined as one which represents the high dimen-
sional observations in a state that conforms to the actual degrees
of freedom of the system, i.e., a state that retains the information
content of the observations.

Compressed or lower dimensional state representations are desir-
able for control,2,3 predictive inference,4,5 and interpretation,6 among
others. Ideally, such representations contain the essential aspects of the
system. In practice, it is hard to enforce this, thus, the overarching
question we seek to address is: What constitutes the objective function
that learns a useful state?
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In this work, a variational autoencoder7 (VAE) is used to learn a
state representation of electron density and temperature profile mea-
surements of AUG plasmas. The state representation and machine
parameters are used to train a forward model to predict the dynamical
evolution of the state. The end result is a model that can predict
dynamical evolution of the electron density and temperature profiles
directly from a sequence of machine parameters (Fig. 1).

II. DATASET

The dataset used in this analysis consists of 1000 high confine-
ment mode (H-mode) discharges that are non-disruptive, deuterium
fueled, and without impurities. For each pulse, observations are outer-
mid-plane electron profiles of density, ne, and temperature, Te, and
actions are machine control parameters.

The electron profiles are obtained from the IDA8 at AUG, which
applies Bayesian probability theory to fit a spline to core-edge mea-
surements originating from lithium beams, electron cyclotron emis-
sions, Thomson scattering, and interferometry.

The following machine control parameters were selected: total
plasma current, IP, safety factor magnitude at 95% flux surface, q95,
total deuterium injection rate, DTOT, plasma major radius, R, plasma
elongation j, upper triangularity du, lower triangularity, dl, aspect
ratio, A ¼ R=a (where R and a are the major and minor radii of the
plasma), and total heating power normalized by the Martin LH-
threshold scaling,9 PTOT=PLH. The motivation for using the Martin
scaling instead of just PTOT is that PTOT=PLH is a normalized parame-
ter with respect to plasma scenarios and can be applied for any device
size that was used in the scaling. The chosen machine parameters are
considered to be “controllable” even though not all are strictly knobs
on the tokamak, i.e., IP is not the current through the central solenoid
but is a quantity that is achieved through attenuation of controllable
parameters (the current through the central solenoid). The same holds
for the parameters related to the plasma shape even though they are all

reconstructed values of the plasma state (dl; du;A;R, and j). The
machine parameters are linearly interpolated in time with respect to
the IDA measurement frequency (1 kHz) in order to homogenize the
sampling frequencies of both actions and observations.

Then, the combined set of observations and actions are time-wise
downsampled, which transformed the time step frequency from 1kHz
to 200Hz, i.e., observations and actions were selected every 5ms as
opposed to the 1ms true sampling interval. This is done in part
because the observations and actions chosen in this work tend to have
low variability within 5ms intervals.

The data are split into training, validating, and testing subsets,
consisting of 853 (�5500 real-time seconds), 137, and 137 discharges,
respectively. Additionally, discharges coming from the same shot
request are binned into the same subset, which helps ensure that the
training set does not include similar discharges as the validating and
testing sets. The observations and actions are z-score normalized via
the mean and standard deviation of the training set.

III. MODEL

The model follows “World Modeling” as first proposed in Ref.
10; here, an “observational” model is used to compress measurements
at a given time to a latent distribution, si, and a “forward” model to
evolve this distribution into the future, sj where j> i. Following more
recent advances in World Modeling,2,11 we additionally train the
observational and forward models in one computational graph.
Finally, a physics prior is introduced to guide the representation to be
more physically informative.

The goal of the observational model is to learn a function that
can reconstruct observations from a given state, i.e., learn /ðh/Þ :
ot ! st and pðhpÞ : st ! ôt , where / has parameters h/. We assume
that these relations are not deterministic; therefore, we argue to treat
these functions as probability distributions. To do so, we employ a
VAE, a probabilistic generative model, consisting of an encoder (/)
and decoder (p) distribution. The encoder and decoder distribution
are parameterized by neural networks. The distributions are learned by
minimizing the reconstruction error (L2 norm) between observations,
ot, and their reconstructions, ôt , in combination with a regularizing
term (Kullbeck–Leibler divergence) on a prior belief of the encoder
distribution, /h/ðstjotÞ, resulting in our implementation of the VAE
objective function

Lobs ¼ E/;p jjôt � ot jj2
� �þ KLð/h/ðst j otÞ jj pðstÞÞ;

where pðstÞ ¼ N ð0; 1Þ is our prior belief about the state distribution,
and the expectation E/;p is estimated using the re-parameterization
trick.7 The prior belief about the state distribution is strictly a design
choice to allow for an unconstrained model; future work would include
identifying physics-based distribution as priors. The effect of different
norms for the reconstruction loss was not explored in this work due to
the efficiency of the L2 norm. The architecture of the observational
model is given in Table I.

The goal of the forward model is to predict a future state stþ1

from the previous state st and machine control parameters at, i.e., to
learn the mapping f ðhf Þ : st ; at ! ŝtþ1. Since the state st is a distribu-
tion, the output of the forward model, ŝ tþ1, is the parameters of a
probability distribution, also parameterized by a neural network, from
which ŝ tþ1 is sampled. To match stþ1 with ŝtþ1, the following objective
function is used:

FIG. 1. A representation of the plasma state at ASDEX-Upgrade. On the left, a 2D
cross section of the plasma with various flux surfaces labeled by their flux surface
coordinate q. The confined region of the plasma spans from the core (q ¼ 0:0) to
the separatrix (q ¼ 1:0). Machine parameters related to the shape of the plasma
are labeled; the upper/lower triangularity, du=l , the major and minor radius, R, a. On
the right, observations of the electron density and temperature are visualized. The
main plasma kinetic profiles are typically remapped to the outer-mid-plane (location
corresponding to the colorbar in the left). Flux surfaces move during the course of
the discharge, as does the magnitude of the electron profiles; we seek to model the
dynamics of the kinetic profiles in this work.
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Lf ¼ E/;f KLð/ðstþ1 j otþ1Þ jj f ð̂stþ1 j st ; atÞÞ½ �;
where, once again, the Kullbeck–Liebler divergence is used. The archi-
tecture of the forward model is given in Table II.

Together, a prediction of a future state, stþ1, is made by first
encoding ot to st, then transitioning from st to stþ1 (Fig. 2). In this fash-
ion, the forward model and observational model are trained simulta-
neously by minimizing the following objective:

L ¼ Lobs þ Lf :

It is worth noting here that by allowing gradients to flow from Lf

back through to the encoder of the observational model, the learned
state representation is expected to retain properties that facilitate state
dynamics prediction by the forward model.

Additionally, two forms of regularization are added to the model:
(i) a penalty on violation of static pressure conservation in reconstruc-
tion / jjntTt � n̂t T̂t jj1 and (ii) the pushforward trick from,12 where
the forward model predicts ŝ tþi, with i> 1, using the previous forward
model prediction of stþi�1. Ideally, the pressure penalty encourages the
observational model to encode physically consistent electron density
and temperature reconstructions and was first explored in.4 The pres-
sure penalty is very similar to the reconstruction error; however, we
believe the pressure penalty helps to regularize the predictions of the

density and temperature with respect to fluctuations around a pressure
value. For example, if the reconstruction error is 0, then the pressure
error is also 0. Yet, if the reconstruction error is non-zero, then the
pressure error could be �0, i.e., the fluctuations in temperature and
density may even out to yield zero pressure error. If the model is
wrong, we would rather the model learn to be wrong in this way. The
pushforward trick12 aims to stabilize auto-regressive models in long-
range planning. During training, the number of time steps to rollout, i,
is determined per mini-batch by sampling from a uniform distribution
U ½0;N�, where N is the number of epochs trained thus far. The loss is
only calculated between the final rollout state, ŝ tþi, and corresponding
state stþi. In other words, we cut the gradients in the unrolling stage.

Since the space of observations O is constrained to Rþ, the out-
put of the observation model is clamped to output only positive real
values during training. This is done by clamping the output of the
observational decoder.

Due to the competing objectives and to normalize the reconstructed
pressure penalty with respect to the remaining objectives, we found it
useful to weight individual components with scaling factors. Training
hyperparameters and objective penalty weights are given in Table III. A
rigorous search for optimal hyperparameters, including state size, was
not conducted. However, the final configurations 3 were selected among
others by obtaining the lowest error on the validation dataset.

IV RESULTS
A. Observational model

The quality of the observational model can be determined by com-
paring the observation with the reconstruction (Fig. 3). For the test-set
discharges, a mean absolute error (MAE) between reconstruction and

TABLE I. Observational model architecture. The observations are 1D profiles with
two channels, the density and temperature. The 1D convolution and 1D transposed
convolution layers are denoted as Conv. and Transp. Conv., respectively. The param-
eters of the convolution are denoted as (in channels¼ i, out channels¼ o, kernel
width¼ k, and stride¼ s), i.e., a convolution layer with 2 in channels, 4 out channels,
a kernel width of 4 and a stride of 2 would be denoted as Conv. (2, 4, 4, 2). The
encoder to state has two components, denoting the mean and standard deviation of
the latent variable.

Model component Layer(s) Activation

Encoder Conv. (2, 4, 4, 2) ReLU
Conv. (4, 8, 4, 2) ReLU
Conv. (8, 16, 4, 2) ReLU
Conv. (16, 32, 4, 2) None

Encoder to state Dense (320, 8), Dense (320, 8) None
Decoder Dense (8, 128) None

Transp. Conv. (128, 16, 5, 3) ReLU
Transp. Conv. (16, 8, 6, 3) ReLU
Transp. Conv. (8, 4, 6, 3) ReLU
Transp. Conv. (4, 2, 6, 3) ReLU

Output Dense (165, 200) None

TABLE II. Forward architecture. The initial layer of the forward model has size
8 (state size)þ 9 (action size) ¼ 17. Similar to the observational model, the forward
model outputs the parameters of a distribution; therefore, the last layers parameterize
the mean and standard deviation.

Model component Layer(s) Activation

State to state Dense (8þ 9, 20) None
Dense (20, 8) and dense (20, 8) None

FIG. 2. Graphical representation of the full model. Electron profiles are encoded via
the observational model to the state st. To predict stþ1, the forward model takes st
and actions at, here, the plasma current IP and gas puff rate CD. The observational
model can be used to decode the state to retrieve kinetic profiles.
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observation has a mean of 0.286 0.13� 1019 m�3 and 0.116 0.07
(keV) for density and temperature, respectively. These lossy compression
results are expected, as the state space is only 8-D while the observational
space is 400 points for each time step. Increasing the state space dimen-
sionality would likely yield lower reconstruction error. The average
reconstruction error (MAE) of the test set discharges for q ¼
0:0; 0:5; 0:9; and1:0 is given in Table IV.

We find the reconstruction quality of the observational model to
be sufficiently accurate to proceed with the forward model.

B. Forward model

To determine the predictive quality of the forward model on AUG
discharges, we first encode the observations at t¼ 0 to a state s0 via the
observational model, then the forward model rolls s0 out to the final time
step using true actions and its own predictions of ŝ t>0. Each ŝt is then

decoded into profiles via the observational decoder. The MAE of all time
steps over all discharges for the forward model is 0.976 0.55 1019m�3

and 0.356 0.24 (keV) for density and temperature, respectively. The
average reconstruction error (MAE) of the test set discharges for
q¼ 0:0; 0:5; 0:9; and1:0 is given in Table V. The average percentage
reconstruction error (MAPE) is given in Table VI. Both the MAE and
MAPE are reported due to large variations radially of the magnitude of
density and temperature, i.e., at q > 1:0 density and temperature are rel-
atively low compared to q ¼ 0:0. The mean accumulation of error does
not rapidly increase over time for test-set discharges (Fig. 4).

The forward model is able to capture the profile evolution for var-
ious discharges, for example, a plasma scenario with feedback density
control (Fig. 5) as well as a power stepwise ramp up (Fig. 6).

C. Forward model with auxiliary regressor

Expanding on previous work,4 we further regularize the state rep-
resentation by learning a mapping rðhrÞ : st ! PTOT=PLH; sE , where

TABLE III. Objective weights and training parameters used for the SRL model. All
weights are scalar multiplied by their corresponding objective value per mini-batch
update. KLobs is applied to the KL term in Lobs. KLf is applied to the KL term of in
Lf . L1ot is applied to the L

1 term of Lobs. L1pt is applied to the L
1 pressure penalty.

Objective weights

Name KLobs KLf L1ot L1pt
Value 0.01 1.0 100 0.0001

Training hyperparameters
Name Batch size Optimizer Learning rate
Value 8 Adam13 0.02

FIG. 3. Observational model’s reconstruction of AUG discharge #36150. The left
and right figures show the density and temperature profile evolutions, respectively.
The top and bottom plots show the true profiles and model reconstruction, respec-
tively. The x and y-axes on all figures are the same. The reconstruction error is
similar to that of the average of the test set discharges, as the MAE of the density
and temperature profiles averaged over this discharge is 0.326 0.29 (1019 m�3)
and 0.126 0.12 (keV), respectively. Mean and standard deviation of the errors
are calculated over 100 sample reconstructions. Respective errors at
q¼ 0:0; 0:5; 0:9; and1:0 are given in Table IV.

TABLE IV. The MAE of the observational model’s reconstructions for various q. The
MAE for AUG #36150 (Fig. 3) is provided to compare with the average over the test
set discharges. Standard deviations for all values are calculated over 100 sample
reconstructions, given the injection of noise in the VAE.

Average MAE over test set discharges

q 0.0 0.5 0.9 1.0
ne (10

19m�3) 0.466 0.6 0.316 0.13 0.336 0.17 0.416 0.28
Te (keV) 0.36 0.12 0.116 0.09 0.066 0.03 0.036 0.06

AUG #36150 (Fig. 3)
ne (10

19m�3) 0.236 0.18 0.436 0.27 0.456 0.27 0.786 0.6
Te (keV) 0.266 0.17 0.166 0.12 0.16 0.06 0.066 0.06

TABLE V. The MAE of the forward model’s reconstructions for various q. The MAE
of the AUG discharges visualized in this work is provided for comparison with the
average over the test set discharges. Standard deviations for all values are calcu-
lated over 100 sample reconstructions.

Average MAE over test set discharges

q ¼ 0:0 0.5 0.9 1.0
ne (10

19m�3) 1.516 0.83 1.136 0.76 1.076 0.61 0.686 0.43
Te (keV) 0.966 0.72 0.366 0.24 0.156 0.11 0.056 0.09

AUG #34828 (Fig. 5)
ne 0.5976 0.57 0.396 0.36 0.386 0.28 0.256 0.21
Te 0.876 0.33 0.116 0.1 0.076 0.05 0.046 0.02

AUG #36022 (Fig. 6)
ne 0.676 0.57 0.836 0.26 0.746 0.31 0.56 0.37
Te 0.546 0.41 0.176 0.1 0.096 0.06 0.026 0.02

AUG #36150 (Fig. 10)
ne 2.576 1.02 1.866 0.93 1.766 0.79 2.996 0.84
Te 1.226 1.05 0.556 0.39 0.326 0.28 0.546 0.21

AUG #36669 (Fig. 11)
ne 1.216 1.23 1.016 0.86 0.886 0.79 0.746 0.5
Te 0.876 0.51 0.406 0.45 0.156 0.09 0.16 0.02
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PTOT=PLH is the aforementioned normalized power action, and sE is
the global confinement time. Inspired by Joy et al.,6 we split st into two
sub-spaces sc;t and s=c;t and apply the mapping only on sc;t . The
dimensionality of sc;t is 2, one dimension for each regressed variable,
and the dimensionality of s=c;t is kept to 6 so that the total dimension-
ality of st is preserved from the previous experiment. Then, the map-
ping rðhrÞ is made to be linear with respect to the regressed variables
PTOT=PLH and sE, i.e., a diagonal matrix that maps one dimension of
sc;t to PTOT=PLH and the other remaining dimension to sE. The origi-
nal loss function L then gains the following additional L 1 loss term:

Er;/ jjac;t � âc;t jj1
� �

;

where ac;t and âc;t are the true regressed variables and their recon-
structions, respectively.

With the additional regressor, it was seen that the model can infer
the confinement time and power variable via an observed a state st.
The observed state can be encoded by either the observational model
or predicted as before using the forward model (Fig. 7).

While the reconstructed value of sE tends to be higher than the
true value, the reconstructed PTOT=PLH values are quite close to true
observations. The elevated sE predictions might be caused by biases
originating from the beginning and end of the plasma discharges and
will be investigated in futures studies. The main message in this proof-
of-principle work is to demonstrate the attachment of semantically
meaningful information from the plasma state to the trained state rep-
resentation with the auxiliary regression modules.

Since one dimension of sc;t is linear with respect to PTOT=PLH, we
receive a simplified H-mode classifier without additional training.
Assuming that PTOT=PLH is sufficiently accurate in quantifying the
presence of H-mode, i.e., a plasma is in H-mode when PTOT=PLH � 1
and sufficient predictive quality of the auxiliary regressor, then via the
linear mapping r, there exists an equivalent threshold, sc;t > Hthresh

within the relevant power dimension of sc;t (Fig. 8).
However, the additional objective comes at cost, as we observed

small penalties on the reconstructive quality in the forward and obser-
vational models (Fig. 9). This is likely due to the two dimensions no
longer free to compress information only pertaining to profile

TABLE VI. The mean-absolute percentage error (MAPE) of the forward model’s
reconstructions for various q. The MAPE is calculated as the L1 difference between
the predicted and true value, divided by the true value. The MAPE of the AUG dis-
charges visualized in this work are provided for comparison with the average over
the test set discharges. Standard deviations for all values are calculated over 100 sam-
ple reconstructions. Large deviations (MAPE > 100%) in the edge are expected, as
the temperature and density tend to be relatively low (ne < 1018m�3; Te < 140 eV).

Average MAPE over test set discharges

q 0.0 0.5 0.9 1.0
ne (%) 28.896 20.37 28.556 19.97 34.316 29.76 376.66 326.6
Te (%) 65.826 101.6 26.536 17.71 73.606 167.2 208.76 353.4

AUG #34828 (Fig. 5)
ne 10.736 14.63 12.476 15.57 12.056 10.23 17.736 15.60
Te 31.336 15.38 13.676 15.33 24.296 27.46 52.746 79.44

AUG #36022 (Fig. 6)
ne 12.976 10.18 15.7756 10.15 15.8376 15.82 22.336 54.52
Te 21.706 16.77 13.7886 10.32 31.5166 97.79 43.276 129.8

AUG #36150 (Fig. 10)
ne 53.96 53.54 44.586 47.45 54.446 56.12 263.66 147.1
Te 42.766 46.58 27.176 21.95 51.546 57.96 521.56 177.8

AUG #36669 (Fig. 11)
ne 33.146 46.30 32.666 46.56 40.446 84.46 104.46 311.2
Te 25.776 17.39 17.746 16.20 18.596 20.06 22.316 20.98

FIG. 4. The test set forward model error (MAPE) as a function of time. The error
per step is calculated as the average over the density and temperature profiles up
to q � 1:0 for that step. The reason for radial cutoff is the very low values of tem-
perature and density at q > 1:0. The spikes at the beginning and end are likely
due the discharge entering and exiting H-mode, where the density and temperature
rapidly change and are, therefore, difficult to precisely match.

FIG. 5. AUG #34828 comparison of true (top) and forward model predicted (middle)
electron density and temperature profiles are plotted along with time traces of the
radial values at q ¼ 0:0; 0:5, and 0.9 (bottom). All rows in the left column are asso-
ciated with density and the right with temperature. The solid/dotted grid lines in the
top/middle plot correspond to the solid/dotted traces in the bottom plot. The initial
state s0 is sampled from the encoder of the observational model given the profiles
at t0. The initial state is then propagated in time alongside actions and previous
state prediction via the forward model. The density prediction is worse at the begin-
ning of the pulse, likely due to the fluctuation feedback of the gas flow rate, but
eventually stabilizes to the true value. The resulting reconstructions of the predicted
states from the forward model demonstrate the capability to handle sufficiently com-
plex plasma scenarios. Respective errors of the density and temperature at
q¼ 0:0; 0:5; 0:9; and1:0 are given in Tables V and VI.
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reconstruction information. It is likely that increasing the size of the
state would resolve this.

D. Model limitations

The forward model is limited by the type and distribution of
machine parameters that is provided. For example, as only the total
heating power is provided, any discharges where input power mixtures

is varied midshot are subject to relatively large prediction errors
(Fig. 10). Another example is strong tungsten accumulation in the
plasma, such as observed in some of the actively cooled divertor
experiments (Fig. 11). Since the actions selected in this work do not
show the corresponding variations seen on these discharges, the

FIG. 6. AUG #36022 comparison of true (top) and forward model predicted (middle)
electron density and temperature profiles are plotted along with time traces of the
radial values at q ¼ 0:0; 0:5, and 0.9 (bottom). All rows in the left column are asso-
ciated with density, the right with temperature. The solid/dotted grid lines in the top/
middle plot correspond to the solid/dotted traces in the bottom plot. The initial state
s0 is sampled from the encoder of the observational model given the profiles at t0.
The initial state is then propagated in time alongside actions and previous state pre-
diction via the forward model. In this discharge, the total power input is increased
stepwise, leading to a stepwise increase in core electron temperature, which match
reconstructions of the predicted state. Respective errors of the density and tempera-
ture at q ¼ 0:0; 0:5; 0:9; and1:0 are given in Tables V and VI.

FIG. 7. The predicted and true time traces of sE (top) and PTOT=PLH (bottom) from
AUG #34814. The predictions of the observational model (Obs.) are obtained by
encoding observations to st and applying the auxiliary mapping. The predictions of
the forward model (Forw.) are obtained by encoding the first observation to an initial
state, i.e., o0 ! s0, then rolling out with the forward model until the last action.

FIG. 8. Top: the time trace of state dimension sc1 ;t is encoded by the forward model
using the actions of AUG # 34814. The horizontal line (colorbar vertical) marks the
value of sc1 ;t , which corresponds to an inferred PTOT=PLH ¼ 1. The coloring is
found by applying the auxiliary regressor to the range of sc1 ;t 2 ½�10; 0�. Due to
the linear capacity of the auxiliary mapping, the output of the mapping on sc1 ;t on
the interval ½�10; 0� neither does change in time nor does it change with respect to
any other state variable. Like Ref. 14, we arrive at a model that can predict different
regimes, albeit in very different fashion. Bottom: the time trace of PTOT=PLH for
AUG #34814, with horizontal line marking where PTOT=PLH ¼ 1.

FIG. 9. Even with the auxiliary regressor, the state representation and forward
model are still able to capture complex time evolution of AUG discharges. The true
density and temperature time traces at various q are opaque to show the slight dif-
ferences with predicted time traces.
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forward model will mispredict the resulting profiles. However, the
experimental observations generally fall within the 90% confidence
interval (Fig. 12).

V. DISCUSSION

In this work, we have demonstrated the utility of state representa-
tion learning toward learning the plasma state at ASDEX-Upgrade.
Our proposedmodel is able to predict the electron density and temper-
ature profiles from machine parameters only. Additionally, we demon-
strate the functionality of learning a state representation by
incorporating a simplified H-mode classifier into the model while
retaining the ability to predict the time evolution of plasma profiles.

The MAPE/MAE errors are reported in Tables V and VI. While
these points estimates can have significant deviations, we note that the
correct profile generally falls within the 90% confidence interval, as
depicted in Fig. 12. Future work will explore more rigorous evaluations
of the predictive distribution.

The forward model developed in this work has a very limited
capacity (Table II). It might be useful to improve the forward mod-
el’s capacity, e.g., via a recurrent neural network as demonstrated
in Ref. 2. An alternative approach was demonstrated in Refs. 16
and 17, where a deep learning variation on Kalman filters is
learned by sampling the transition between states with a VAE.
Also, our approach to using a linear transform for time-stepping
latent representations has some commonalities with the work in
Ref. 18, where Koopman operator theory is used to guide auto-
encoders into learning Koopman eigenfunctions from data, i.e., the
latent space has globally linear dynamics. A key difference being

that we predict the mean and standard deviation of a distribution,
which we sample at each time step. Here, perhaps, there is a con-
nection to latent neural stochastic differential equation models19

(NSDE), where our autoregressive formulation can be considered a
crude discretization of such an NSDE.

The cumulative error plot (Fig. 4) is in some sense troubling.
We expected to see a stepwise accumulation of error, as with tra-
ditional forward model predictors. Interestingly, it appears that
the observational model encodes information about the machine
parameters, even though this information is only propagated
through the forward model. As a result, when the plasma reaches

FIG. 10. In AUG #36150, the power starts as mainly NBI and ECR driven, however,
at 4.5 s, NBI is rapidly cut off and supplemented with ICR. Since PTOT=PLH is the
only available power variable to the forward model, it observes a steady stream of
power, which does not induce major changes in the inferred plasma state. It is likely
that including separate variables for each power parameter would increase the resil-
ience of the model to similar discharges. Respective errors of the density and tem-
perature at q ¼ 0:0; 0:5; 0:9; and1:0 are given in Table V. Predictions obtained
from the model without the auxiliary regressor.

FIG. 11. AUG #36669, the top two plots are the true and forward model predicted
temperature profiles and remaining plots are the corresponding actions for the
pulse. The y-axis for the actions figures are the units, and their corresponding name
is given within the plot. In AUG #36669, the device is configured to test actively
cooled divertor plates, and accumulation of impurities lead to an increase in core
radiated power,15 dropping the core temperature. The actions supplied to the model
do not sufficiently encode this information and the model does not predict the tem-
perature decrease. It is likely that including additional actions that are more corre-
lated with detached/attached plasmas would increase the resilience of the model,
such as those used in Ref. 5. Respective errors of the density and temperature at
q ¼ 0:0; 0:5; 0:9; and1:0 are given in Table V. Predictions obtained from the
model without the auxiliary regressor.
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flat top, the forward model likely pulls the state prediction to a
previously seen steady state representation. We believe this has to
do with verifiability20 and appears to be both a feature and a bug.
An open question is then to what extent the latent dynamic model
simply learns to propagate the state through a series of steady
states rather than (ideally) predicting the temporal evolution of
the plasma. Along this line, we hypothesize that one could learn a
steady state model within a DIVA/CCVAE-like framework,6,21 as
in Ref. 4, treat all time slices as steady state, and ultimately forgo
the forward model. Future studies will investigate steady-state
and dynamical models within the context of verifiability.

We believe an important question is what information, and at
what frequency, is needed to predict future plasma states. Additional
questions arise; assuming the true plasma state is Markovian, as we
suspect, then what observables are necessary to capture that? Also, if
we can approximate the true state sufficiently well in a low dimen-
sional representation, then (a) what observations are used to learn
such a state and (b) what actions are needed to (accurately) propagate
that state in time?

Take, for example, at a given time, observations of the wall and
plasma facing components in comparison to observations of the core.
If we observe tungsten in the edge via spectroscopic measurements,22

this accumulation is not immediately seen in the core. Thus, an open
question is how to reconcile the differing time scales of differing order
phenomena in tokamaks?

A limitation to our model is that it is data-driven and generative.
Outside of constraining the output of the decoder to Rþ, we do not
enforce the model to predict “physically valid” plasmas. It is of interest,
then, to look into how we may constrain the representation to be phys-
ically valid.

Future work would explore including MHD stability and instabil-
ity information into the state. Such a model could provide time-of-
flight information on whether a plasma crosses a stability threshold,
and if so, possibly what instability may be triggered.
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