001025618 001__ 1025618
001025618 005__ 20250203103137.0
001025618 0247_ $$2doi$$a10.1103/PhysRevB.107.075420
001025618 0247_ $$2ISSN$$a2469-9950
001025618 0247_ $$2ISSN$$a2469-9977
001025618 0247_ $$2ISSN$$a0163-1829
001025618 0247_ $$2ISSN$$a0556-2805
001025618 0247_ $$2ISSN$$a1095-3795
001025618 0247_ $$2ISSN$$a1098-0121
001025618 0247_ $$2ISSN$$a1538-4489
001025618 0247_ $$2ISSN$$a1550-235X
001025618 0247_ $$2ISSN$$a2469-9969
001025618 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03007
001025618 0247_ $$2WOS$$aWOS:000933970900003
001025618 037__ $$aFZJ-2024-03007
001025618 082__ $$a530
001025618 1001_ $$0P:(DE-HGF)0$$aSonntag, J.$$b0
001025618 245__ $$aCharge carrier density dependent Raman spectra of graphene encapsulated in hexagonal boron nitride
001025618 260__ $$aWoodbury, NY$$bInst.$$c2023
001025618 3367_ $$2DRIVER$$aarticle
001025618 3367_ $$2DataCite$$aOutput Types/Journal article
001025618 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714730539_26324
001025618 3367_ $$2BibTeX$$aARTICLE
001025618 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025618 3367_ $$00$$2EndNote$$aJournal Article
001025618 520__ $$aWe present low-temperature Raman measurements on gate-tunable graphene encapsulated in hexagonal boron nitride, which allows us to study in detail the Raman G and 2D mode frequencies and linewidths as a function of the charge carrier density. We observe a clear softening of the Raman G mode (of up to 2.5 cm−1) at low carrier density due to the phonon anomaly and a residual G mode linewidth of ≈3.5cm−1 at high doping. By analyzing the G mode dependence on doping and laser power we extract an electron-phonon-coupling constant of ≈4.4×10−3 (for the G mode phonon). The ultraflat nature of encapsulated graphene results in a minimum Raman 2D peak linewidth of 14.5 cm−1 and allows us to observe intrinsic electron-electron scattering-induced broadening of the 2D peak of up to 18 cm−1 for an electron density of 5×1012cm−2 (laser excitation energy of 2.33 eV). Our findings not only provide insights into electron-phonon coupling and the role of electron-electron scattering in the broadening of the 2D peak but also crucially show the limitations when it comes to the use of Raman spectroscopy (i.e., the use of the frequencies and the linewidths of the G and 2D modes) to benchmark graphene in terms of charge carrier density, strain, and strain inhomogeneities. This is particularly relevant when utilizing spatially resolved 2D Raman linewidth maps to assess substrate-induced nanometer-scale strain variations.
001025618 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001025618 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001025618 536__ $$0G:(EU-Grant)881603$$aGrapheneCore3 - Graphene Flagship Core Project 3 (881603)$$c881603$$fH2020-SGA-FET-GRAPHENE-2019$$x2
001025618 536__ $$0G:(EU-Grant)820254$$a2D4QT - 2D Materials for Quantum Technology (820254)$$c820254$$fERC-2018-COG$$x3
001025618 536__ $$0G:(GEPRIS)437214324$$aDFG project 437214324 - Durchstimmbare Twistronics: Lokales Tuning und lokale Detektion topologischer Randzustände und Supraleitung in Zweilagigen-Graphen (437214324)$$c437214324$$x4
001025618 536__ $$0G:(GEPRIS)436607160$$aDFG project 436607160 - NEMS Sensoren aus 2D-Material-Heterostrukturen (436607160)$$c436607160$$x5
001025618 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x6
001025618 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025618 7001_ $$0P:(DE-HGF)0$$aWatanabe, K.$$b1
001025618 7001_ $$0P:(DE-HGF)0$$aTaniguchi, T.$$b2
001025618 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, B.$$b3
001025618 7001_ $$0P:(DE-Juel1)180322$$aStampfer, C.$$b4$$eCorresponding author
001025618 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.107.075420$$gVol. 107, no. 7, p. 075420$$n7$$p075420$$tPhysical review / B$$v107$$x2469-9950$$y2023
001025618 8564_ $$uhttps://juser.fz-juelich.de/record/1025618/files/PhysRevB.107.075420.pdf$$yOpenAccess
001025618 8564_ $$uhttps://juser.fz-juelich.de/record/1025618/files/PhysRevB.107.075420.gif?subformat=icon$$xicon$$yOpenAccess
001025618 8564_ $$uhttps://juser.fz-juelich.de/record/1025618/files/PhysRevB.107.075420.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025618 8564_ $$uhttps://juser.fz-juelich.de/record/1025618/files/PhysRevB.107.075420.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025618 8564_ $$uhttps://juser.fz-juelich.de/record/1025618/files/PhysRevB.107.075420.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025618 909CO $$ooai:juser.fz-juelich.de:1025618$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025618 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001025618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b3$$kFZJ
001025618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b4$$kFZJ
001025618 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001025618 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001025618 9141_ $$y2024
001025618 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001025618 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001025618 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025618 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001025618 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001025618 920__ $$lyes
001025618 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001025618 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001025618 980__ $$ajournal
001025618 980__ $$aVDB
001025618 980__ $$aUNRESTRICTED
001025618 980__ $$aI:(DE-Juel1)PGI-9-20110106
001025618 980__ $$aI:(DE-Juel1)PGI-11-20170113
001025618 9801_ $$aFullTexts