001025619 001__ 1025619
001025619 005__ 20250203103414.0
001025619 0247_ $$2doi$$a10.1038/s41699-023-00394-0
001025619 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03008
001025619 0247_ $$2WOS$$aWOS:000966281100001
001025619 037__ $$aFZJ-2024-03008
001025619 082__ $$a670
001025619 1001_ $$0P:(DE-HGF)0$$aTebbe, David$$b0
001025619 245__ $$aTailoring the dielectric screening in WS2–graphene heterostructures
001025619 260__ $$aLondon$$bNature Publishing Group$$c2023
001025619 3367_ $$2DRIVER$$aarticle
001025619 3367_ $$2DataCite$$aOutput Types/Journal article
001025619 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714728952_26324
001025619 3367_ $$2BibTeX$$aARTICLE
001025619 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025619 3367_ $$00$$2EndNote$$aJournal Article
001025619 520__ $$aThe environment contributes to the screening of Coulomb interactions in two-dimensional semiconductors. This can potentially be exploited to tailor material properties as well as for sensing applications. Here, we investigate the tuning of the band gap and the exciton binding energy in the two-dimensional semiconductor WS2 via the external dielectric screening. Embedding WS2 in van der Waals heterostructures with graphene and hBN spacers of thicknesses between one and 16 atomic layers, we experimentally determine both energies as a function of the WS2-to-graphene interlayer distance and the charge carrier density in graphene. We find that the modification to the band gap as well as the exciton binding energy are well described by a one-over-distance dependence, with a significant effect remaining at several nanometers distance, at which the two layers are electrically well isolated. This observation is explained by a screening arising from an image charge induced by the graphene layer. Furthermore, we find that the effectiveness of graphene in screening Coulomb interactions in nearby WS2 depends on its doping level and can therefore be controlled via the electric field effect. We determine that, at room temperature, it is modified by approximately 20% for charge carrier densities of 2 × 1012 cm−2.
001025619 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001025619 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001025619 536__ $$0G:(EU-Grant)881603$$aGrapheneCore3 - Graphene Flagship Core Project 3 (881603)$$c881603$$fH2020-SGA-FET-GRAPHENE-2019$$x2
001025619 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x3
001025619 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025619 7001_ $$0P:(DE-HGF)0$$aSchütte, Marc$$b1
001025619 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b2
001025619 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b3
001025619 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b4
001025619 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b5
001025619 7001_ $$0P:(DE-HGF)0$$aWaldecker, Lutz$$b6$$eCorresponding author
001025619 773__ $$0PERI:(DE-600)2893016-2$$a10.1038/s41699-023-00394-0$$gVol. 7, no. 1, p. 29$$n1$$p29$$tnpj 2D materials and applications$$v7$$x2397-7132$$y2023
001025619 8564_ $$uhttps://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.pdf$$yOpenAccess
001025619 8564_ $$uhttps://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.gif?subformat=icon$$xicon$$yOpenAccess
001025619 8564_ $$uhttps://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025619 8564_ $$uhttps://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025619 8564_ $$uhttps://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025619 909CO $$ooai:juser.fz-juelich.de:1025619$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b4$$kFZJ
001025619 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b5$$kFZJ
001025619 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001025619 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001025619 9141_ $$y2024
001025619 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025619 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025619 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ 2D MATER APPL : 2022$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNPJ 2D MATER APPL : 2022$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:05Z
001025619 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:05Z
001025619 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025619 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:05Z
001025619 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001025619 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001025619 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001025619 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
001025619 980__ $$ajournal
001025619 980__ $$aVDB
001025619 980__ $$aUNRESTRICTED
001025619 980__ $$aI:(DE-Juel1)PGI-11-20170113
001025619 980__ $$aI:(DE-Juel1)PGI-9-20110106
001025619 9801_ $$aFullTexts