| Home > Publications database > Tailoring the dielectric screening in WS2–graphene heterostructures > print |
| 001 | 1025619 | ||
| 005 | 20250203103414.0 | ||
| 024 | 7 | _ | |a 10.1038/s41699-023-00394-0 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-03008 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:000966281100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-03008 |
| 082 | _ | _ | |a 670 |
| 100 | 1 | _ | |a Tebbe, David |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Tailoring the dielectric screening in WS2–graphene heterostructures |
| 260 | _ | _ | |a London |c 2023 |b Nature Publishing Group |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714728952_26324 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The environment contributes to the screening of Coulomb interactions in two-dimensional semiconductors. This can potentially be exploited to tailor material properties as well as for sensing applications. Here, we investigate the tuning of the band gap and the exciton binding energy in the two-dimensional semiconductor WS2 via the external dielectric screening. Embedding WS2 in van der Waals heterostructures with graphene and hBN spacers of thicknesses between one and 16 atomic layers, we experimentally determine both energies as a function of the WS2-to-graphene interlayer distance and the charge carrier density in graphene. We find that the modification to the band gap as well as the exciton binding energy are well described by a one-over-distance dependence, with a significant effect remaining at several nanometers distance, at which the two layers are electrically well isolated. This observation is explained by a screening arising from an image charge induced by the graphene layer. Furthermore, we find that the effectiveness of graphene in screening Coulomb interactions in nearby WS2 depends on its doping level and can therefore be controlled via the electric field effect. We determine that, at room temperature, it is modified by approximately 20% for charge carrier densities of 2 × 1012 cm−2. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 1 |
| 536 | _ | _ | |a GrapheneCore3 - Graphene Flagship Core Project 3 (881603) |0 G:(EU-Grant)881603 |c 881603 |f H2020-SGA-FET-GRAPHENE-2019 |x 2 |
| 536 | _ | _ | |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Schütte, Marc |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Watanabe, Kenji |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Taniguchi, Takashi |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Stampfer, Christoph |0 P:(DE-Juel1)180322 |b 4 |
| 700 | 1 | _ | |a Beschoten, Bernd |0 P:(DE-Juel1)178028 |b 5 |
| 700 | 1 | _ | |a Waldecker, Lutz |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41699-023-00394-0 |g Vol. 7, no. 1, p. 29 |0 PERI:(DE-600)2893016-2 |n 1 |p 29 |t npj 2D materials and applications |v 7 |y 2023 |x 2397-7132 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025619/files/s41699-023-00394-0.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1025619 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)180322 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178028 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 1 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NPJ 2D MATER APPL : 2022 |d 2023-08-23 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NPJ 2D MATER APPL : 2022 |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:13:05Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:13:05Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:13:05Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|