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Particle-hole symmetry protects spin-valley blockade in graphene quantum dots

L. Banszerus,2:* S. Moller,"?>* K. Hecker,"? E. Icking,'? K. Watanabe,?
T. Taniguchi,* F. Hassler,” C. Volk,"? and C. Stampfer® 2 f

YJARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany, EU
2 Peter Griinberg Institute (PGI-9), Forschungszentrum Jilich, 52425 Jilich, Germany, EU

3 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

4 International Center for Materials Nanoarchitectonics,
National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
5 JARA-Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany, EU
(Dated: March 21, 2023)

Particle-hole symmetry plays an important role for the characterization of topological phases
in solid-state systems'. It is found, for example, in free-fermion systems at half filling, and it is
closely related to the notion of antiparticles in relativistic field theories?. In the low energy limit,
graphene is a prime example of a gapless particle-hole symmetric system described by an effective
Dirac equation®*, where topological phases can be understood by studying ways to open a gap
by preserving (or breaking) symmetries®®. An important example is the intrinsic Kane-Mele spin-
orbit gap of graphene, which leads to a lifting of the spin-valley degeneracy and renders graphene a
topological insulator in a quantum spin Hall phase”, while preserving particle-hole symmetry. Here,
we show that bilayer graphene allows realizing electron-hole double quantum-dots that exhibit nearly
perfect particle-hole symmetry, where transport occurs via the creation and annihilation of single
electron-hole pairs with opposite quantum numbers. Moreover, we show that this particle-hole
symmetry results in a protected single-particle spin-valley blockade. The latter will allow robust
spin-to-charge conversion and valley-to-charge conversion, which is essential for the operation of

spin and valley qubits.

Carbon-based materials, such as monolayer and bilayer
graphene, are interesting hosts for spin and spin-valley
qubits, thanks to their weak spin-orbit (SO) coupling” 1°
and weak hyperfine interaction'™'2. Bilayer graphene
(BLG) is attracting in particular increasing attention, as
it presents a gate-tunable band gap, E,*'3, which can be
used to electrostatically confine charge carriers into quan-
tum point contacts and quantum dots (QDs)? 1014717,
The small size of this gap (up to ~ 100meV) allows form-
ing ambipolar quantum dots, which is not possible in
standard semiconductors'® 2. Another attracting fea-
ture is that, at low energy, charge carriers have an or-
bital magnetic moment caused by the finite Berry curva-
ture®21:22, These orbital magnetic moments are aligned
perpendicular to the BLG plane and allow to control the
valley degree of freedom, as they have opposite signs for
the two valleys (K and K’) and for electrons and holes,
as illustrated in Fig. 1a. This property is a consequence
of the particle-hole symmetry that is imprinted in the
low-energy Hamiltonian of bilayer graphene,

1 E
HBLG = _%‘I’T[(pi_p2)0$+2pwpy0y72]\1/+?gqﬂ-o'z‘l’a

as well as on the intrinsic Kane-Mele SO coupling term
HSO = %ASO\IJTO'ZTZSZ\I/7’8. Here, m = 0.033 Me is the
effective mass of the charge carriers in BLG with the
free electron mass me, p; are momentum operators and
si, Ti, 0; are Pauli matrices (i = z,y, z) acting on the spin,
valley and sublattice space, respectively. Both Hpr,¢ and
Hgo are invariant under the particle-hole transformation
K, which effectively flips the sublattice, the valley, and
the spin indices, KUTK—1 = oyTz5y¥. As a consequence,

the hole spectrum in BLG mirrors the electron spectrum
around the K and K’ points.

This symmetry remains true in BLG quantum dots.
In this case the orbital states are quantized and form
shells with four states, which are grouped by the in-
trinsic spin-orbit coupling into Kramers’ doublets, | K1),
|K'|) and |K'T), |K|). Every electron state in the ener-
getically lower (higher) Kramers’ pair in the conduction
band has a corresponding hole state in the energetically
higher (lower) Kramers’ pair in the valence band, as illus-
trated in Fig. 1b. This is in stark contrast to the single-
particle spectrum of QDs in carbon nanotubes, where
the spin-orbit coupling caused by the curvature breaks
the particle-hole symmetry?324. Here, we show that
this symmetry is almost perfectly preserved also when
electron and holes are physically separated into different
quantum dots and that it leads to a very strong single-
particle blockade in the transport through electron-hole
double quantum dots (DQDs).

The DQD devices are fabricated as schematically
shown in Fig. 1c. The devices consist of BLG encap-
sulated between two crystals of hexagonal boron nitride
(hBN) resting on a graphite crystal that acts as a back
gate. A pair of metallic split gates (SGs) on top is used to
create a narrow conducting channel (see Methods). Two
layers of interdigitated finger gates across the channel are
used to modulate the band-edge profile along the channel
and to confine electrons and holes in neighboring QDs,
as illustrated in Fig. 1d'%25. The charge stability dia-
gram in Fig. le gives an overview of the different charge
configurations of the investigated device at Vgp = 1mV
(see Suppl. Sec. A, for reversed bias). At finger gate
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FIG. 1. Electron-hole symmetry in bilayer graphene and the formation of electron-hole (e-h) double QDs. a Low
energy dispersion relation of gapped BLG at the K and K’ points. The arrows indicate the orientation of the valley-dependent
orbital magnetic moment of electrons (blue) and holes (red). b Each orbital state in the electron and hole QDs holds four single
particle states due to the spin and valley degree of freedom. The Spin-orbit gap, Aso, splits the fourfold degeneracy of each
orbital into two Kramers’ pairs. Black (colored) arrows indicate the orientation of the spin (valley) magnetic moment. The first
electron shell in the conduction band is separated from the first hole shell in the valence band by E; and the confinement energy
of the QD. ¢ Schematic cross-section of the device. The van-der-Waals heterostructure consists of a hBN/BLG/hBN /graphite
stack. The gate pattern comprises a layer of split gates, forming a narrow channel, and two layers of finger gates to define and
control the QDs. d Schematic of the valence and conduction band edge profiles along the p-type channel. Finger gates (L, C
and R) form an e-h DQD. e Charge stability diagram of the device at Vsp = 1 mV. Red dashed lines indicate charging lines of a
hole QD, while black dashed lines indicate charging lines of electron QDs, with the electron (hole) occupation number labelled
in black (white). The dashed circles mark the formation of single e-h DQDs. The position of the QDs along the channel is

interchanged for the red and black circle.

voltages Vi, and Vg < 4.1 V, a hole QD is formed under-
neath the central finger gate C, whereas at Vi, and Vg 2>
4.1 V an electron-electron DQD is formed under the left
(L) and right (R) gate. The dashed lines indicate the
charge transitions of the electron (black) and hole (red)
QDs. The intersections of the electron and hole charg-
ing lines, correspond to the formation of an ambipolar
electron-hole DQD.

We now focus on the triple point of the charge transi-
tion (Oh, 0e) <> (1h, 1e) , highlighted by the black dashed-
circle in Fig. le. For positive bias voltages, a steady
tunnel current through the DQD involves the transition
(Oh,0e) — (1h, le), i.e. it is only possible if electron-hole
pairs with opposite quantum numbers (e.g. |K|), and
|K'T),) can continuously be created. As the SO coupling
has opposite sign for electrons and holes, this is possible
only in two configurations, o and g, illustrated in the two
panels of Fig. 2a. These two configurations, which are
energetically offset by 2Ag0, result in two sharp current-
peaks in the bias triangle, as shown in Fig. 2b. The
value of Agp extracted from the separation of the peaks
along the detuning axis Ae = 2Ago = 140 + 10 ueV, is
in excellent agreement with the value of Agp measured
in an electron-electron DQD realized in the same device
(Ago = 68+£7 peV, see Suppl. Sec. B) and in other BLG
QD experiments? 1926, The separation of the two reso-
nances remains constant when applying a perpendicular

magnetic field, only their position changes with respect
to the baseline of the bias triangle, as can be seen in
Fig. 2c. In contrast, the separation between o and 3 in-
creases slightly when applying a parallel magnetic field,
and a third resonance, v, appears in between, as shown
in Fig. 2d. This behavior can be well understood, as
explained below.

Before turning to this, we consider the case of neg-
ative bias voltage applied to the e-h DQD device. In
this case, tunnel transport through the DQD requires
the continuous annihilation of electron-hole pairs, i.e.
(1h,1e) — (Oh,0e), which is only possible if the elec-
tron and hole have opposite quantum numbers. However,
since electrons and holes tunnel in from the leads with
random quantum numbers, transport is blocked as soon
as the QDs are occupied by charge carriers with incom-
patible quantum numbers, as sketched in Fig. 2e. This
blockade is robust up to very high detuning energies, be-
cause it can only be overcome by involving excited states
that are separated in energy from the low energy spec-
trum by the band-gap, which is typically of the order of
20 — 60meV. The blockade is nicely visible in Fig. 2f,
where the tunnel current inside the (1h,1le) — (0h,Oe)
bias triangle is entirely suppressed, except for a faint con-
tribution that can be attributed to co-tunneling. The
current is slightly enhanced only at the corners of the
bias triangle (see dashed circles), which correspond to
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FIG. 2. Finite bias spectroscopy and spin-valley blockade. a Schematics of the alignment of energy levels in the first
shells of an electron-hole DQD for positive bias. Creation of electron-hole pairs is only possible when states of opposite spin and
valley quantum numbers are aligned, hence transport only occurs via the ground state (o) and excited state transition (8). b
Charge stability diagram of the (0h,Oe) — (1h, le) transition at Vsp = 1 mV. Dashed lines show the outline of the bias triangle
and co-tunneling lines, while the white arrow indicates the direction of increasing detuning, ¢, between the two QDs. ¢ Charge
stability diagram as in b, but for B, = 0.4 T. The transitions o and f shift with respect to the outline of the bias triangle but
don’t change their separation. d Charge stability diagram as in b, but for Bj = 0.75 T. The peaks o and § slightly increase
their separation and an additional transition, 7, appears in between. e Schematic as in a, but for negative bias. Electrons and
holes tunneling into the DQD from the leads need to recombine in order to allow for a current flow. As soon as charge carriers
with incompatible spin and valley quantum number occupy the QDs, transport is blocked. f-h Charge stability diagrams as
in panels b-d, but recorded at negative bias, Vsp = —1 mV, corresponding to the (1h,1le) — (0h,Oe) transition. Transport is
blocked, except for faint co-tunneling effects and small currents at the corners of the bias triangles (see dashed circles). The
insets show simulations of the current at the corners of the bias triangles.

the configurations where the electron or hole states are
aligned with the Fermi level of source or drain, respec-
tively. Under this condition, incompatible charge-carriers
can tunnel back into the leads and new ones, possibly
with matching quantum numbers, can enter the QD) lift-
ing the blockade and allowing a small current through
the DQD. This is confirmed by measurements on another
DQD (Suppl. Sec. C) and by simulations based on the
single particle spectrum of BLG QDs and Pauli’s master
equation®”?® (Suppl. Sec. D), which shows the lifting of
the blockade only at the corners of the bias triangle, as
shown in the inset of Fig. 2f-h. Applying perpendicular
magnetic fields leaves the blockade intact and reduces the
co-tunneling current below the noise floor'%?9, as shown
in Fig. 2g. The difference between the average current
inside the bias triangle and the co-tunneling current out-
side is below 10 fA, i.e not measurable. For parallel mag-
netic fields, the blockade also remains intact, but with a
stronger enhancement of the tunnel current at the cor-
ners of the triple point, which is in agreement with the

simulation (see Fig. 2h).

The picture of the symmetry-protected valley block-
ade presented above is based on the careful analysis of
all possible transitions between single-hole and single-
electron states in the left and right QD, and on magneto-
transport measurements that support the assignment of
the states involved into the various transport processes.
The magnetic-field dependent energy dispersion of the
first hole and electron states is depicted in Fig. 3a.
When applying a perpendicular magnetic field, B, the
degeneracy of the Kramers’ pairs is lifted, and each
state shifts due to the spin and valley Zeeman effect
AE(B)) = %(:I:gs + gy)upB1. Here, pp is the Bohr
magneton, gs ~ 2 the spin g-factor®* 32 and g, the val-
ley g-factor, which quantifies the strength of the Berry
curvature induced valley-dependent orbital magnetic mo-
ment?2. From Fig. 2c and Suppl. Fig. S5b, we extract
gy =~ 15 for our DQD system. Electrons and holes with
opposite quantum numbers experience the same ”Zee-
man shift”, and therefore, the splitting between the «
and [ transitions remains constant with B,. This is



a E 4
Ig:; A/so ; K 1),
e ¥

S |

| K<;>e
| KQ;>€

v Bl|a a ||B
Electrons
Holes

K%,
|K<), |
A
|KS), = | | |
|K—) Aso K1),
[K 1),
B, B.(M

FIG. 3. Probing the single-particle electron-hole symmetric spectrum. a Energy dispersion of the first four single-
particle electron (blue) and hole (red) states in parallel and perpendicular magnetic fields. The Kane-Mele spin-orbit splitting,
which has opposite sign for the valence and conduction band, polarizes the spins out-of-plane for zero magnetic field. The
colored lines show the required detuning of allowed transitions (creation or annihilation) between hole states in the left QD
and electron states in the right QD. b Current through the DQD for positive bias, Vsp = 1 mV, as function of B, and of
detuning. The direction of the detuning axis is indicated by the white arrow in Fig. 2b. Since the position of the resonances «
and (3 shifts in gate-space as a function of B, (see e.g. Fig. 2b,c), we plot here the current as function of an effective detuning
&, defined such that for each value of B, the position of the resonances a and f is symmetric with respect to € = 0. ¢ Same
measurement as in b, but for a second DQD (see Suppl. Fig. $3-S5). d Current through the DQD as a function of € and Bj
for positive voltage. Colored circles indicate peak positions of the current. The colored lines indicate the expected positions of
the local maxima, as given by the required detuning for each transition (c.f. length of the arrows in a). e Simulation of the
current as a function of € and B)| based on a Pauli’s master equation. f Current through the DQD as a function of € and B,

for negative bias, Vsp = —1 mV. g Same as in panel f, but for Bj.

clearly reflected in the magneto-transport measurements
presented in Fig. 3b,c, which show the current measured
along the detuning axis € of the (0h, 0e) — (1h, le) triple
point (see arrow in Fig. 2b) as a function of B .

The situation is different for in-plane magnetic fields,
By, where the spin-Zeeman effect competes with the SO
coupling, which polarizes the spins out-of-plane for zero
B-field®. With increasing Bjj, the spins are tilted into
the plane of the BLG, aiming for the same spin direc-
tion within a Kramers’ pair, and for opposite spin direc-
tions in different Kramers’ pairs (see Fig. 3a, left side).
The energy difference between Kramers’ pairs increases
according to AE(B)) = :l:%\/Ago + (gsusByj)?. This
means that the required detuning for the « transition
decreases, while the one for the § transition increases, as
can be seen in Fig. 3d. Both « and (8 eventually vanish
for B > 0.4T, as the overlap between states in differ-
ent Kramers’ pairs is reduced with the increasing tilt of
the spins into the plane of the BLG. Instead, transitions
involving states from the same Kramers’ pair of electron
and hole states become possible, i.e. pair-creation of the

form |K <), ¢ |K' =), or |[K' =), < |K «),. They
appear as a third resonance, v, which is nicely visible
in Fig. 3d. This behavior is confirmed by our simu-
lation, assuming the energy spectrum in Fig. 3a with
Ago = 70 ueV, g, = 15 and gs = 2.

We confirm the robustness of the blockade for both
perpendicular (Fig. 3f) and parallel (Fig. 3g) magnetic
fields by repeating the measurements of Figs. 3b,d for
negative bias. As argued above, the robustness is a direct
consequence of the absence of energetically accessible ex-
cited states and of the particle-hole symmetry manifested
in the spin and valley texture of our system, which for-
bids ground-state to ground-state transitions. This is in
stark contrast to the usual singlet-triplet Pauli-blockade
in conventional semiconductors33*, which can be lifted
by tunneling via excited states. The robustness of the
blockade also indicates that (i) spin- or valley-flipping
tunnel processes are negligible, and (ii) there is no mix-
ing between the states within a Kramers’ pair.

The experimental data are fully consistent with a de-
scription of the electron-hole DQD that is particle-hole
symmetric. It should be noticed, however, that such a



symmetry is not a priori granted in the system, since
electrons and holes are physically separated into two dif-
ferent QDs on different layers of the BLG, and that the
inversion symmetry is broken due to the electric displace-
ment field, as illustrated by the schematic in Fig. 4a.
Note that that the displacement field induced extrin-
sic Rashba SO coupling is not relevant for breaking the
electron-hole symmetry, as discussed in Suppl. Sec. E.
There are, however, other two possible symmetry break-
ing mechanisms. The first one is a difference in the valley
g-factors for electrons and holes, which might be possible
since the valley g-factor sensibly depends on the geome-
try of the QD?2%:22:28 and electrons and holes sit in two
different QDs. Different valley g-factors, i.e. ¢S # gP,
would break the electron-hole symmetry of the system
at finite B; (see Fig. 4b), and lead to a splitting of
the o and S resonances with increasing B, (see Suppl.
Sec. F). The second mechanism that could break the
electron-hole symmetry is a difference in SO coupling for
electrons and holes, AL, # AR,. This could originate
from the fact that at low k-values electrons and holes are
located on the different layers of BLG326. Thus, they
can experience a different proximity-enhanced SO cou-
pling, caused by varying inter-atomic distances or crys-
tallographic orientations between BLG and the top and
bottom hBN crystal. Assuming different SO coupling en-
ergies in the top (t) and bottom (b) layer (see Fig. 4a,b),
the Kane-Mele spin-orbit Hamiltonian of BLG takes then
the form?2°

1
Hso = Z\IJT [(AtSO + A'go) o, — (Atso — Ago) 0'0} 7,5, V,

which breaks the layer symmetry. Such a layer dependent
SO coupling would cause a splitting of the « transition
with a separation proportional to the asymmetry of the
SO coupling between the two layers |Af, — ARy

To quantify these effects, we extract the full width at
half maximum (T") of the resonances «, 8, and ~ by fit-
ting Gaussian line shapes and assuming a constant back-
ground and an equal width of the o and 8 peaks (see
Fig. 4c,d). For increasing B , we observe a slight broad-
ening of the o and § resonance, as shown in Fig. 4e. At-
tributing this broadening entirely to a difference of valley
g-factors between the electron and hole QD, we get an
upper limit for the valley g-factor mismatch below 1%
of gy, which is consistent with the high symmetry of our
gate design. For parallel magnetic fields, Fig. 4f shows
that the average width (I'ng) is comparable with (I',),
indicating very similar SO couplings in the two layers.
From the uncertainty of the line widths, we estimate the
layer asymmetry of the Kane-Mele SO coupling to be
|ALy — A8p| < 5pueV, i.e below 10% of Ago.

This careful analysis confirms that the system is very
close to perfect particle-hole symmetric, with a rich
and well-understood single-particle spectrum, in full
agreement with the topologically non-trivial Kane-Mele
model of a quantum spin Hall insulator. Moreover, we
demonstrated that the electron-hole symmetry leads
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FIG. 4. Quantitative assessment of the electron-hole
symmetry a Schematic of the electron and hole QDs located
on the two different layers of the BLG sheet, potentially ex-
periencing different proximity-enhanced SO couplings on each
layer. The black arrow indicates the direction of the applied
displacement field. b Energy dispersion of the first four single-
particle electron (blue) and hole (red) states as a function
of B, assuming ¢¢ # g% and Ao # Aly. ¢ Line cuts at
B, = Bj = 0 along the black and gray arrows in Figs. 3d
and 3e. d Line cuts at B = 0.8 T along the arrows in Fig. 3d
and e. The peaks «, 3,7 are fitted to Gaussian line shapes. e
Average width (I'og) of the resonances a and f for different
ranges of B, . Error bars indicate the 80% percentile of I'ng.
f As in e, but for (I'ag) and (I';) at B = 0.66 — 0.8 T, where
all three resonances are well distinguishable.

to a strong single-particle spin and valley blockade,
which is robust up to high detuning energies. This is in
contrast to singlet-triplet Pauli spin blockade typically
observed in conventional semiconductors®*3* (including
BLG?%), where the blockade is restricted to detuning
energies below the singlet-triplet splitting, which can be
limited by a finite valley splitting as e.g. in silicon®?.
Furthermore, at finite magnetic fields, the electron-hole
symmetry protected blockade in BLG cannot be lifted by
spin and valley relaxation, as observed in GaAs33. The
symmetry protected spin-valley blockade mechanism
in BLG allows for spin-to-charge and valley-to-charge
conversion, making it a promising read-out mechanism
for spin and valley qubits.

Methods
Sample fabrication. The devices are fabricated from
mechnically exfoliated BLG flakes encapsulated between



two hBN crystals of approximately 25 nm thickness
using conventional van-der-Waals stacking techniques.
A graphite flake is used as a BG. Cr/Au SGs with a
lateral separation of 150 nm are deposited on top of the
heterostructure. Isolated from the SGs by 15 nm thick
atomic layer deposited AlyO3, we fabricate two layers of
70 nm wide FGs with a pitch of 150 nm. Details of the
fabrication process can be found in Ref.!?.
Measurement technique. All measurements are per-
formed in a dilution refrigerator at a base temperature
of 10 mK, using standard DC measurement techniques.
QDs are created following previous studies of gate-
defined BLG QDs'42%:25 Throughout the experiment,
a constant BG voltage of Vgg = —1.73 V and a SG
voltage of Vgg = 1.56 V is applied to define a p-type
channel between source and drain. The estimated band
gap is around 20 meV. For better comparability, the
data in Figs. 3b,cf,g is shown symmetrically around
zero magnetic field.
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A. Charge stability diagrams for opposite bias voltages in DQD #1
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FIG. S1. Charge stability diagrams of DQD #1 (as in Fig. 1d of the main text) measured at a bias
voltage of a Vogp =1 mV and b Vgp = —1mV (T=10mK). The dashed circles mark the formation
of single electron — single hole DQDs using the hole QD and an electron QD to the left (red) or
right (black) of the hole QD. c-d Schematics of the valence and conduction band edge profiles
along the p-type channel. An electron-hole double quantum dot is formed using the hole QD and
the electron QD underneath the left (right) FG (see red (black) circles in Fig. Sla,b).

Fig. S1 compares charge stability diagrams measured at positive and negative bias voltage
in DQD #1 (c.f. Figs. 1, 2 and 3 in the main text). The dashed lines indicate the
charge transitions of the electron (black) and hole (red) QDs. Electron-hole (e-h) DQDs
are formed at the intersections of these charging lines. For the left electron-hole DQD
((Oh,0e) <> (1h, le) transition, see red circle), transport is blocked at positive bias, while for
the right electron-hole DQD ((0h,0e) <+ (1h, le) transition, see black circle), transport is

blocked at negative bias. The data in the main text has been obtained in the latter regime.



B. Extracting Ago from measurements on a single-electron DQD in the same

device

To compare the measured value for Agg in the electron-hole DQD and to demonstrate that
the magnitude of the SO gap is symmetric for electrons and holes, we present measurements
of Agp in an electron-electron DQD. Fig. S2 shows a close-up of the first triple point of an
electron-electron DQD formed in the same device (c.f. Fig. S1). Transport via a ground
state and an excited state can be observed. We extract their energy splitting by fitting two
Lorentzian peaks to a linecut through the triple point (see Fig. S2b). The determined value
of Ago = 68 7 ueV is in good agreement with the ones observed in the electron-hole DQD
regime. A detailed discussion of Ago and the single particle spectrum in the electron DQD

in this device is given in Ref. [1].
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FIG. S2. a Charge stability diagrams of the (le,0e) <+ (Oe, le) transition of an electron-electron
DQD measured at Vsp = 1 mV and B; = 0 T (T=10mK). A ground state and an excited
state transition are visible (see black arrows). b Cut along the yellow dashed line in a. Two
Lorentzian peaks (dashed lines) are fitted to the data. Inset: Schematic energy diagrams of an
electron-electron DQD in the finite bias regime for different interdot detuning energies ¢, illustrating
resonant transport from the left (L) to the right (R) QD through the ground state of each QD

(transition (i)) and resonant transport at € = Ago (transition (ii)).



C. Additional data set for another e-h double quantum dot (DQD #2) in the

same device

Ve (V)

Vi(v)

FIG. S3. a and b Gate configurations used to form DQD #1 and DQD #2 in the device,
respectively. ¢ Charge stability diagram of an e-h DQD formed with the second set of gate fingers
(DQD #2, see panel b). The dashed circle marks the (0h,0e) — (1h, le) transition. Vsp = 1 mV
(T=10mK).

A second e-h DQD has been studied, formed with a different set of gate fingers on the
same gated bilayer graphene device as presented in the main text (DQD #2 depicted in
Fig. S2b). The single electron — single hole transition, (0h,0e) — (1h, le), is highlighted by
the dashed circle in the charge stability diagram (see Fig. S3c).

Measurements of that bias triangle are shown in Figs. S4 for different Vsp and magnetic
fields, showing good agreement with the data presented for DQD #1 in Fig. 2. In contrast
to the data presented in the main manuscript, co-tunneling is more pronounced due to a
strong coupling of the hole QD to the reservoir.

The magnetic field dependent spectrum of the first electron and the first hole states is
depicted in Fig. S5a (c.f. Fig. 3a of the main text). Figs. S5b and ¢ show measurements
complementary to the one presented in Fig. 3 of the main text, recorded for DQD #2 shown

in Fig. S3b. The measurements show that the difference in detuning energy between o and
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FIG. S4. a, b Close-ups of the (0h,0e) — (1h, le) triple point at Vsp = 0.5 mV and Vgp = 1.5 mV,
respectively. Transport only occurs via the o and S transition. ¢ Charge stability diagram as in ¢
measured at By = 0.6 T. d Charge stability diagram as in b at B = 0.7 T. e, f Charge stability
diagrams as in b and ¢ at Vgp = —0.5 mV and Vgp = —1.5 mV. Transport is strongly suppressed,

only co-tunneling can be observed. g, h Charge stability diagrams as in g measured at B; = 0.6 T

and B” =07T.

B is independent of B , the energy splitting measures Ae = 150410 peV, which corresponds
to 2Ag0. The background current originates from co-tunneling in the bias transport window
(its onset is highlighted by the white dashed line), which shifts in energy with increasing
|B|. This is due to the fact that the bias window is defined by the (forbidden) ground state
transition |K’ 1), <> |K'1),, which requires less detuning for increasing |B,|. The same
measurement for parallel magnetic fields shows the effect of the spins being continuously
canted into the BLG plane. The difference in detuning of the transitions o and [ increases
while a third resonance, v, emerges. The data is in good qualitative and quantitative
agreement with the data presented in Fig. 3 of the main text. Figs. S5d and S5e show
magneto-transport data in the single-particle blockade regime. The spin-valley blockade is
not lifted under the influence of both in-plane and out-of-plane magnetic fields. Transport
via co-tunneling is suppressed at increasing B as (also in this case) the tunneling barriers

turn more opaque due to magnetic confinement.
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FIG. S5. a Energy dispersion of single-particle states in the first orbital for electrons and holes as a
function of in-plane (Bj|, left) and out-of-plane (B, right) magnetic fields. States and transitions
are labelled as in Fig. 3a of the main text. b Current through DQD # 2 as a function of the
detuning energy ¢ (see yellow dashed line in Fig. S4b) and B, at Vgp = 1.5 mV. The white dashed
line marks the onset of the bias transport window. ¢ Current through the device as a function of
€ and Bj at Vsp = 1.5 mV. d, e Data acquired in the blockade regime (Vsp = —1.5 mV). The
current has been measured as a function of B, and Bj|, respectively. Data has been symmetrized

around B = 0.



D. Simulation of magnetotransport through an e-h DQD

We simulate transport within the DQD bias triangles and along the detuning cuts by
solving the rate equations for the electron and hole QD states presented in Fig. 3a following

the approach used in Ref. [2]. The energy of the respective electron and hole states is given

by

1 1 1
He = §ASOTZSZ + QQSNBB -S + §gvﬂBBz7—z (1)

Hh = _He7 (2)

with the spin and valley g-factors g = 2 and g, = 15, the Bohr magneton ug, the proximity
enhanced (intrinsic) Kane-Mele spin-orbit coupling Ago = 70 peV and the Pauli matrices s;
and 7; which act on spin and valley, respectively. We approximate the effect of the right (R)
and left (L) finger gate on the charging energy of the system by

E¢(Ngr, Ni) = eNgVg + eN LW, (3)

with the absolute value of the elementary charge, e, the QD occupation number Ny, = —1
(1h), Ng =1 (1le) and the gate voltages Vg and V;,. For describing transport through the e-h
DQD, we focus on the (0,0) — (—1,1) — (=1,0) — (0,0) charge cycle and only consider
sequential tunneling. There are in total 25 possible states of the system y = (hole QD state,
electron QD state) with

X = (¢u, ¥e) (4)
On, e € {0, K1, K], K't, K'|}. (5)

Here, ¢y, describe the state of the left and right QD, which includes the four single
particle states, as well as the QD being empty.

We assume no mixing between lead and QD states and equal tunnel probabilities to and
from the leads for all states, y*® = 1.7 GHz. Thus, we obtain the transition rates between

QD states involving tunneling processes from the leads (I,R) by computing

Wit = 7L’R f(Ey — By — :“L’R)a (6)

x<x"
with the Fermi-function, f, at 7" = 0.1 K, and the electron and hole QD states ¢y, .. Note

that hole states only tunnel to the left lead and electron states only tunnel to the right lead.

8



For interdot transitions, we assume no mixing of electron and hole states due to the small
interdot tunnel coupling. For simplicity, relaxation is neglected. We obtain the rates of the

interdot transition by computing

inter _ inter . inter
W(O,O)e(%we) - W(d)h,we)(—(O,O) =G (Pn|te)

Eoo — E 2
exp <_( 0.0) ~ Eonwe)) > )

1

V2o 402

with the interdot tunnel rate 4™ = 6 kHz and ¢y, e € {K1, K|, K't, K'|}. The Gaussian
energy smearing models the experimentally observed peaks with an estimated width of the
resonances ' = 40 peV. We expect that this smearing originates from voltage fluctuations
of the finger gates. The overlap between electron and hole states is given by (¢p|te) =
(0yTuSy)éy.w. i Order to assure that only electrons and holes with opposite quantum numbers
are created (or annihilated). With equation (7) we implicitly assume that the states in the

left and right QD have no coherent phase relation.

We solve the master equation of the probabilities, P,, for the system to be in state x,

Py = Z(WM—X’ Py = Wyey Px)7 (8)

X/
in the stationary limit, PX = 0, normalizing the probabilities to ZX P, = 1. In the
stationary limit, we can compute the current through the double QD by computing the

current flow from the right QD to lead R:

R R 5 R 5
If=e) (W(%,O)e(th,we)P(%,we) - th,zpe)e(m,O)Pwh,O)) : (9)
(z)hvwe

We follow this procedure for different magnetic fields and different gate voltage combina-
tions V1, Vr. The result is shown in Fig. S6, where we are able to reproduce the experimental
data of Figs. 2b-d and Figs. 2f-h. Additionally, we simulate the current along the detuning
axis of the (0h,0e) — (1h, le) triple point as a function of parallel magnetic field, which is

presented in Fig. 3e of the main manuscript.
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FIG. S6. Charge stability diagrams of the first triple point simulated by solving the rate equation.
a - c¢ depict the forward bias direction (Vsp = 1 mV) for different magnetic fields, showing the
same features as the experimental data presented in Fig. 2. d - f show the blocked bias direction
(Vep = —1 mV) for the same magnetic fields. For zero magnetic field, the blockade is lifted at the
corners of the bias triangle, where back and forth tunneling to source (or drain) allows lifting the
blockade. The effect is even larger at finite parallel magnetic fields, where the spins are tilted into

the plane of the BLG.
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E. Electron-hole symmetry breaking due to Rashba spin-orbit coupling

Since we are explicitly breaking the inversion symmetry of BLG with a perpendicular elec-
tric field, extrinsic (Rashba) spin-orbit coupling poses an additional mechanism to break the
electron-hole symmetry in our DQD system. The corresponding full spin-orbit Hamiltonian
acting on the low energy bands is then given by [6]

1 1
Ho = W1 ([ + Alo)a. — (Ao = Alo)oolres. + 3 hex(0yss +iT.005,) ) ¥,

with the Pauli matrices 7, 0, s as defined in the main text, the extrinsic (Rashba) SO coupling
Aex, Which scales linearly with the applied electric displacement field, and the proximity
enhanced intrinsic (Kane-Mele) spin-orbit coupling energies A&, and A%, for the top and
bottom layer of the BLG [3] [4]. The influence of the proximity enhanced Kane-Mele spin-
orbit coupling on electron-hole symmetry is discussed in the main text.

For understanding the influence of the extrinsic (Rashba) term, we note that for Fermi
energies close to the band edge, the sublattice space is equivalent to the layer space and
therefore to conduction and valence band. This is caused by the fact that excess charge is
strongly layer polarized, only leading to a small admixture of the sublattices [5, 6]. The
extrinsic SO term couples the two sublattices via o, , and therefore to the two layers, which
experience a potential difference due to the electric displacement field. As a consequence,
the extrinsic spin-orbit term is suppressed to first order by A2 /EZ. Theoretical predictions
of Aex are at least three orders of magnitude smaller than the band gap (E,), rendering

extrinsic spin-orbit coupling irrelevant for our system [1, 4].

11



F. Electron-hole symmetry breaking due to different valley g-factors in the elec-

tron and hole QDs

We investigate how asymmetric valley g-factors would affect the transition spectrum of
the e-h DQD. In Fig. S7a-d we simulate the current through the device as a function of
the detuning energy € and perpendicular magnetic field, B, , for different combinations of
valley g-factors in the hole and electron QD, respectively. As clearly visible in Figs. S7a,b,
both the o and § transition split due to the difference in valley g-factors (see colored lines
in Fig. S7a) by AE = fup|gS — ¢2B.. For equal valley g-factors, o and § do not show
any B, -dependence, as shown in Fig. S7c. A tiny asymmetry in valley g-factors is allowed
without significantly changing the observed features for magnetic fields below 1T, as shown
in Fig. S7d, where a g-factor asymmetry of 0.1 is assumed.

To quantitatively estimate the valley g-factor asymmetry, we fit Gaussian peaks with
width, I, to the detuning cuts presented in Fig. 3b in the main manuscript, allowing for a
constant background and assuming equal width for both peaks, i.e. the o and 8 peak. Such
a fit is exemplarily shown in Fig. S8a. The fitted width of the two peaks increases slightly
for increasing B , as shown in Fig S8b. Attributing this effect entirely to a difference of the
electron and hole g-factors, we obtain a maximum g-factor difference of g, ~ 0.1 (c.f. with

Fig. S7d).
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FIG. S7. Calculation of the current through the device as a function of the detuning energy £ (see
arrow in Fig. 2¢ of the main text) and perpendicular magnetic field at a finite bias of Vgp = 1 mV.
In a, the valley g-factors of the two QDs are chosen asymmetrically (¢ = 15 for the electron QD
and g? = 20 for the hole QD), resulting in a splitting of both, the o and /3 transition, which scales
with the difference in the valley g-factors. In b, the valley g-factors of the two QDs are chosen less
asymmetrically (¢g¢ = 15 for the electron QD and g = 17 for the hole QD), resulting in a smaller
splitting of both, the o and /8 transition, which scales with the difference in the valley g-factors. In
c the valley g-factors are chosen symmetrically (g, = 15), and no dependence on B, is observed.
In d, the experimentally observed g-factor difference of g¢ = 15 and g? = 15.1 is used for the

simulation.
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FIG. S8. a Exemplary line trace of the tunneling current as a function of the detuning. The sum
of two Gauss curves with width I is fitted to the data (see dashed line). b I' extracted from the

line fits as shown in a, as a function of B, . Attributing the linear broadening of o and 5 to an
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asymmetry of valley g-factors between electron and hole QD yields Ag ~ 0.11 .
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