001025621 001__ 1025621
001025621 005__ 20250203103257.0
001025621 0247_ $$2doi$$a10.1103/PhysRevLett.130.256901
001025621 0247_ $$2ISSN$$a0031-9007
001025621 0247_ $$2ISSN$$a1092-0145
001025621 0247_ $$2ISSN$$a1079-7114
001025621 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03010
001025621 0247_ $$2pmid$$a37418733
001025621 0247_ $$2WOS$$aWOS:001026290400003
001025621 037__ $$aFZJ-2024-03010
001025621 082__ $$a530
001025621 1001_ $$0P:(DE-HGF)0$$aVenanzi, Tommaso$$b0
001025621 245__ $$aProbing Enhanced Electron-Phonon Coupling in Graphene by Infrared Resonance Raman Spectroscopy
001025621 260__ $$aCollege Park, Md.$$bAPS$$c2023
001025621 3367_ $$2DRIVER$$aarticle
001025621 3367_ $$2DataCite$$aOutput Types/Journal article
001025621 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714730642_26324
001025621 3367_ $$2BibTeX$$aARTICLE
001025621 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025621 3367_ $$00$$2EndNote$$aJournal Article
001025621 520__ $$aWe report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D′ peaks with respect to that measured in graphite. Comparing with fully ab initio theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two-dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.
001025621 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001025621 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001025621 536__ $$0G:(EU-Grant)881603$$aGrapheneCore3 - Graphene Flagship Core Project 3 (881603)$$c881603$$fH2020-SGA-FET-GRAPHENE-2019$$x2
001025621 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025621 7001_ $$0P:(DE-HGF)0$$aGraziotto, Lorenzo$$b1
001025621 7001_ $$0P:(DE-HGF)0$$aMacheda, Francesco$$b2
001025621 7001_ $$0P:(DE-HGF)0$$aSotgiu, Simone$$b3
001025621 7001_ $$0P:(DE-HGF)0$$aOuaj, Taoufiq$$b4
001025621 7001_ $$0P:(DE-HGF)0$$aStellino, Elena$$b5
001025621 7001_ $$0P:(DE-HGF)0$$aFasolato, Claudia$$b6
001025621 7001_ $$0P:(DE-HGF)0$$aPostorino, Paolo$$b7
001025621 7001_ $$0P:(DE-HGF)0$$aMišeikis, Vaidotas$$b8
001025621 7001_ $$0P:(DE-HGF)0$$aMetzelaars, Marvin$$b9
001025621 7001_ $$0P:(DE-HGF)0$$aKögerler, Paul$$b10
001025621 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b11$$ufzj
001025621 7001_ $$0P:(DE-HGF)0$$aColetti, Camilla$$b12
001025621 7001_ $$0P:(DE-HGF)0$$aRoddaro, Stefano$$b13
001025621 7001_ $$0P:(DE-HGF)0$$aCalandra, Matteo$$b14
001025621 7001_ $$0P:(DE-HGF)0$$aOrtolani, Michele$$b15
001025621 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b16$$ufzj
001025621 7001_ $$0P:(DE-HGF)0$$aMauri, Francesco$$b17
001025621 7001_ $$0P:(DE-HGF)0$$aBaldassarre, Leonetta$$b18$$eCorresponding author
001025621 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.130.256901$$gVol. 130, no. 25, p. 256901$$n25$$p256901$$tPhysical review letters$$v130$$x0031-9007$$y2023
001025621 8564_ $$uhttps://juser.fz-juelich.de/record/1025621/files/PhysRevLett.130.256901-1.pdf$$yOpenAccess
001025621 8564_ $$uhttps://juser.fz-juelich.de/record/1025621/files/PhysRevLett.130.256901-1.gif?subformat=icon$$xicon$$yOpenAccess
001025621 8564_ $$uhttps://juser.fz-juelich.de/record/1025621/files/PhysRevLett.130.256901-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025621 8564_ $$uhttps://juser.fz-juelich.de/record/1025621/files/PhysRevLett.130.256901-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025621 8564_ $$uhttps://juser.fz-juelich.de/record/1025621/files/PhysRevLett.130.256901-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025621 909CO $$ooai:juser.fz-juelich.de:1025621$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b10$$kRWTH
001025621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b11$$kFZJ
001025621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b11$$kRWTH
001025621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b16$$kFZJ
001025621 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180322$$aRWTH Aachen$$b16$$kRWTH
001025621 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001025621 9141_ $$y2024
001025621 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001025621 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001025621 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025621 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2022$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2022$$d2023-10-21
001025621 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001025621 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001025621 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001025621 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001025621 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001025621 980__ $$ajournal
001025621 980__ $$aVDB
001025621 980__ $$aUNRESTRICTED
001025621 980__ $$aI:(DE-Juel1)PGI-9-20110106
001025621 980__ $$aI:(DE-Juel1)PGI-11-20170113
001025621 980__ $$aI:(DE-82)080009_20140620
001025621 9801_ $$aFullTexts