001025624 001__ 1025624
001025624 005__ 20250203103257.0
001025624 0247_ $$2doi$$a10.1103/PhysRevApplied.20.054049
001025624 0247_ $$2ISSN$$a2331-7019
001025624 0247_ $$2ISSN$$a2331-7043
001025624 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03013
001025624 0247_ $$2WOS$$aWOS:001110819700002
001025624 037__ $$aFZJ-2024-03013
001025624 082__ $$a530
001025624 1001_ $$0P:(DE-Juel1)175117$$aSchmidt, Philipp$$b0$$eCorresponding author
001025624 245__ $$aTuning the supercurrent distribution in parallel ballistic graphene Josephson junctions
001025624 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2023
001025624 3367_ $$2DRIVER$$aarticle
001025624 3367_ $$2DataCite$$aOutput Types/Journal article
001025624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714657011_23148
001025624 3367_ $$2BibTeX$$aARTICLE
001025624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025624 3367_ $$00$$2EndNote$$aJournal Article
001025624 520__ $$aWe report on a ballistic and fully tunable Josephson-junction system consisting of two parallel ribbons of graphene in contact with superconducting molybdenum-rhenium. By electrostatic gating of the two individual graphene ribbons, we gain control over the real-space distribution of the superconducting current density, which can be continuously tuned between the two ribbons. We extract the respective gate-dependent spatial distributions of the real-space current density by employing Fourier and Hilbert transformations of the magnetic-field-induced modulation of the critical current. This approach is fast and does not rely on a symmetric current profile. It is therefore a universally applicable tool, potentially useful for carefully adjusting Josephson junctions.
001025624 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001025624 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001025624 536__ $$0G:(GEPRIS)390534769$$aDFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
001025624 536__ $$0G:(EU-Grant)881603$$aGrapheneCore3 - Graphene Flagship Core Project 3 (881603)$$c881603$$fH2020-SGA-FET-GRAPHENE-2019$$x3
001025624 536__ $$0G:(EU-Grant)820254$$a2D4QT - 2D Materials for Quantum Technology (820254)$$c820254$$fERC-2018-COG$$x4
001025624 536__ $$0G:(GEPRIS)438638106$$aDFG project 438638106 - Quantentransport in Nanoröhren: Einzelelektron-Optomechanik und neuartige Materialien (438638106)$$c438638106$$x5
001025624 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025624 7001_ $$0P:(DE-HGF)0$$aBanszerus, Luca$$b1
001025624 7001_ $$0P:(DE-Juel1)186071$$aFrohn, Benedikt$$b2
001025624 7001_ $$0P:(DE-HGF)0$$aBlien, Stefan$$b3
001025624 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b4
001025624 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b5
001025624 7001_ $$0P:(DE-HGF)0$$aHüttel, Andreas K.$$b6
001025624 7001_ $$0P:(DE-HGF)0$$aBeschoten, Bernd$$b7
001025624 7001_ $$0P:(DE-HGF)0$$aHassler, Fabian$$b8
001025624 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b9
001025624 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.20.054049$$gVol. 20, no. 5, p. 054049$$n5$$p054049$$tPhysical review applied$$v20$$x2331-7019$$y2023
001025624 8564_ $$uhttps://juser.fz-juelich.de/record/1025624/files/PhysRevApplied.20.054049.pdf$$yOpenAccess
001025624 8564_ $$uhttps://juser.fz-juelich.de/record/1025624/files/PhysRevApplied.20.054049.gif?subformat=icon$$xicon$$yOpenAccess
001025624 8564_ $$uhttps://juser.fz-juelich.de/record/1025624/files/PhysRevApplied.20.054049.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025624 8564_ $$uhttps://juser.fz-juelich.de/record/1025624/files/PhysRevApplied.20.054049.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025624 8564_ $$uhttps://juser.fz-juelich.de/record/1025624/files/PhysRevApplied.20.054049.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025624 909CO $$ooai:juser.fz-juelich.de:1025624$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175117$$aForschungszentrum Jülich$$b0$$kFZJ
001025624 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001025624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186071$$aForschungszentrum Jülich$$b2$$kFZJ
001025624 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b7$$kRWTH
001025624 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
001025624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b9$$kFZJ
001025624 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001025624 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001025624 9141_ $$y2024
001025624 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001025624 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001025624 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025624 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001025624 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001025624 920__ $$lyes
001025624 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001025624 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001025624 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001025624 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x3
001025624 980__ $$ajournal
001025624 980__ $$aVDB
001025624 980__ $$aUNRESTRICTED
001025624 980__ $$aI:(DE-Juel1)PGI-9-20110106
001025624 980__ $$aI:(DE-Juel1)PGI-11-20170113
001025624 980__ $$aI:(DE-82)080009_20140620
001025624 980__ $$aI:(DE-Juel1)INM-11-20170113
001025624 9801_ $$aFullTexts