| Home > Publications database > Band gap formation in commensurate twisted bilayer graphene/hBN moiré lattices > print |
| 001 | 1025630 | ||
| 005 | 20250204113845.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.109.155139 |2 doi |
| 024 | 7 | _ | |a 2469-9950 |2 ISSN |
| 024 | 7 | _ | |a 2469-9977 |2 ISSN |
| 024 | 7 | _ | |a 0163-1829 |2 ISSN |
| 024 | 7 | _ | |a 0556-2805 |2 ISSN |
| 024 | 7 | _ | |a 1095-3795 |2 ISSN |
| 024 | 7 | _ | |a 1098-0121 |2 ISSN |
| 024 | 7 | _ | |a 1538-4489 |2 ISSN |
| 024 | 7 | _ | |a 1550-235X |2 ISSN |
| 024 | 7 | _ | |a 2469-9969 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-03019 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001229774800002 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-03019 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Rothstein, A. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Band gap formation in commensurate twisted bilayer graphene/hBN moiré lattices |
| 260 | _ | _ | |a Woodbury, NY |c 2024 |b Inst. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714723489_25114 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We report on the investigation of periodic superstructures in twisted bilayer graphene (tBLG) van der Waals heterostructures, where one of the graphene layers is aligned to hexagonal boron nitride (hBN). Our theoretical simulations reveal that if the ratio of the resulting two moiré unit-cell areas is a simple fraction, the graphene/hBN moiré lattice acts as a staggered potential, breaking the degeneracy between tBLG AA sites. This leads to additional band gaps at energies where a subset of tBLG AA sites is fully occupied. These gaps manifest as Landau fans in magnetotransport, which we experimentally observe in an aligned tBLG/hBN heterostructure. Our study demonstrates the identification of commensurate tBLG/hBN van der Waals heterostructures by magnetotransport, highlights the persistence of moiré effects on length scales of tens of nanometers, and represents an interesting step forward in the ongoing effort to realize designed quantum materials with tailored properties. |
| 536 | _ | _ | |a 5222 - Exploratory Qubits (POF4-522) |0 G:(DE-HGF)POF4-5222 |c POF4-522 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 437214324 - Durchstimmbare Twistronics: Lokales Tuning und lokale Detektion topologischer Randzustände und Supraleitung in Zweilagigen-Graphen (437214324) |0 G:(GEPRIS)437214324 |c 437214324 |x 1 |
| 536 | _ | _ | |a DFG project 436607160 - NEMS Sensoren aus 2D-Material-Heterostrukturen (436607160) |0 G:(GEPRIS)436607160 |c 436607160 |x 2 |
| 536 | _ | _ | |a DFG project 390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) |0 G:(GEPRIS)390534769 |c 390534769 |x 3 |
| 536 | _ | _ | |a DFG project 443273985 - Mikroskopische Beschreibung von Korrelationseffekten in verdrehten van der Waals [Hetero]Strukturen (443273985) |0 G:(GEPRIS)443273985 |c 443273985 |x 4 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Schattauer, C. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Dolleman, R. J. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Trellenkamp, S. |0 P:(DE-Juel1)128856 |b 3 |
| 700 | 1 | _ | |a Lentz, F. |0 P:(DE-Juel1)130795 |b 4 |
| 700 | 1 | _ | |a Watanabe, K. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Taniguchi, T. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Kennes, D. M. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Beschoten, B. |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Stampfer, C. |0 P:(DE-Juel1)180322 |b 9 |e Corresponding author |
| 700 | 1 | _ | |a Libisch, F. |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
| 773 | _ | _ | |a 10.1103/PhysRevB.109.155139 |g Vol. 109, no. 15, p. 155139 |0 PERI:(DE-600)2844160-6 |n 15 |p 155139 |t Physical review / B |v 109 |y 2024 |x 2469-9950 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025630/files/PhysRevB.109.155139.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025630/files/PhysRevB.109.155139.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025630/files/PhysRevB.109.155139.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025630/files/PhysRevB.109.155139.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025630/files/PhysRevB.109.155139.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1025630 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a TU Wien |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128856 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130795 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)180322 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5222 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-27 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2022 |d 2024-12-10 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-10 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)HNF-20170116 |k HNF |l Helmholtz - Nanofacility |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-Juel1)HNF-20170116 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|