001     1025640
005     20250203103258.0
024 7 _ |a 10.1016/j.parkreldis.2023.105488
|2 doi
024 7 _ |a 1353-8020
|2 ISSN
024 7 _ |a 1873-5126
|2 ISSN
024 7 _ |a 37407343
|2 pmid
024 7 _ |a WOS:001078735000001
|2 WOS
037 _ _ |a FZJ-2024-03029
082 _ _ |a 610
100 1 _ |a van Eimeren, Thilo
|0 P:(DE-Juel1)169110
|b 0
|e Corresponding author
245 _ _ |a Neuroimaging biomarkers in Huntington's disease: Preparing for a new era of therapeutic development
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714732126_29383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundA critical challenge for Huntington's disease (HD) clinical trials in disease modification is the definition of endpoints that can capture change when clinical signs are subtle/non-existent. Reliable biomarkers are therefore urgently needed to facilitate drug development by allowing the enrichment of clinical trial populations and providing measures of benefit that can support the establishment of efficacy.MethodsBy systematically examining the published literature on HD neuroimaging biomarker studies, we sought to advance knowledge to guide the validation of neuroimaging biomarkers. We started by reviewing both cross-sectional and longitudinal studies and then conducted an in-depth review to make quantitative comparisons between biomarkers using data only from longitudinal studies with samples sizes larger than ten participants in PET studies or 30 participants in MRI studies.ResultsFrom a total of 2202 publications initially identified, we included 32 studies, 19 of which underwent in-depth comparative review. The majority of included studies used various MRI-based methods (manual to automatic) to longitudinally assess either the volume of the putamen or the caudate, which have been shown to undergo significant structural change during HD natural history.ConclusionDespite the impressively large number of neuroimaging biomarker studies, only a small number of adequately designed studies met our criteria. Among these various biomarkers, MRI-based volumetric analyses of the caudate and putamen are currently the best validated for use in the disease phase before clinical motor diagnosis. A biomarker that can be used to demonstrate a disease-modifying effect is still missing.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Giehl, Kathrin
|0 P:(DE-Juel1)178805
|b 1
700 1 _ |a Reetz, Kathrin
|b 2
700 1 _ |a Sampaio, Cristina
|b 3
700 1 _ |a Mestre, Tiago A.
|b 4
773 _ _ |a 10.1016/j.parkreldis.2023.105488
|g Vol. 114, p. 105488 -
|0 PERI:(DE-600)2027635-7
|p 105488 -
|t Parkinsonism & related disorders
|v 114
|y 2023
|x 1353-8020
909 C O |o oai:juser.fz-juelich.de:1025640
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178805
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PARKINSONISM RELAT D : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21