001025644 001__ 1025644
001025644 005__ 20250204113845.0
001025644 0247_ $$2doi$$a10.1002/ardp.202300612
001025644 0247_ $$2ISSN$$a0342-9385
001025644 0247_ $$2ISSN$$a0365-6233
001025644 0247_ $$2ISSN$$a0376-0367
001025644 0247_ $$2ISSN$$a1437-1014
001025644 0247_ $$2ISSN$$a1521-4184
001025644 0247_ $$2ISSN$$a2366-1755
001025644 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03033
001025644 0247_ $$2pmid$$a38319801
001025644 0247_ $$2WOS$$aWOS:001158265900001
001025644 037__ $$aFZJ-2024-03033
001025644 082__ $$a610
001025644 1001_ $$0P:(DE-HGF)0$$aSchmitz, Birte$$b0
001025644 245__ $$aExtracting binding energies and binding modes from biomolecular simulations of fragment binding to endothiapepsin
001025644 260__ $$aWeinheim$$bWiley-VCH$$c2024
001025644 3367_ $$2DRIVER$$aarticle
001025644 3367_ $$2DataCite$$aOutput Types/Journal article
001025644 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715141869_3005
001025644 3367_ $$2BibTeX$$aARTICLE
001025644 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025644 3367_ $$00$$2EndNote$$aJournal Article
001025644 520__ $$aFragment-based drug discovery (FBDD) aims to discover a set of small binding fragments that may be subsequently linked together. Therefore, in-depth knowledge of the individual fragments' structural and energetic binding properties is essential. In addition to experimental techniques, the direct simulation of fragment binding by molecular dynamics (MD) simulations became popular to characterize fragment binding. However, former studies showed that long simulation times and high computational demands per fragment are needed, which limits applicability in FBDD. Here, we performed short, unbiased MD simulations of direct fragment binding to endothiapepsin, a well-characterized model system of pepsin-like aspartic proteases. To evaluate the strengths and limitations of short MD simulations for the structural and energetic characterization of fragment binding, we predicted the fragments' absolute free energies and binding poses based on the direct simulations of fragment binding and compared the predictions to experimental data. The predicted absolute free energies are in fair agreement with the experiment. Combining the MD data with binding mode predictions from molecular docking approaches helped to correctly identify the most promising fragments for further chemical optimization. Importantly, all computations and predictions were done within 5 days, suggesting that MD simulations may become a viable tool in FBDD projects.
001025644 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001025644 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001025644 536__ $$0G:(GEPRIS)270650915$$aGRK 2158 - GRK 2158: Naturstoffe und Analoga gegen Therapie-resistente Tumoren und Mikroorganismen: Neue Leitstrukturen und Wirkmechanismen (270650915)$$c270650915$$x2
001025644 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025644 7001_ $$0P:(DE-Juel1)172887$$aFrieg, Benedikt$$b1$$ufzj
001025644 7001_ $$0P:(DE-HGF)0$$aHomeyer, Nadine$$b2
001025644 7001_ $$0P:(DE-HGF)0$$aJessen, Gisela$$b3
001025644 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4$$eCorresponding author
001025644 773__ $$0PERI:(DE-600)1496815-0$$a10.1002/ardp.202300612$$gp. e2300612$$n5$$pe2300612$$tArchiv der Pharmazie$$v357$$x0342-9385$$y2024
001025644 8564_ $$uhttps://juser.fz-juelich.de/record/1025644/files/Archiv%20der%20Pharmazie%20-%202024%20-%20Schmitz%20-%20Extracting%20binding%20energies%20and%20binding%20modes%20from%20biomolecular%20simulations%20of-1.pdf$$yOpenAccess
001025644 8564_ $$uhttps://juser.fz-juelich.de/record/1025644/files/Archiv%20der%20Pharmazie%20-%202024%20-%20Schmitz%20-%20Extracting%20binding%20energies%20and%20binding%20modes%20from%20biomolecular%20simulations%20of-1.gif?subformat=icon$$xicon$$yOpenAccess
001025644 8564_ $$uhttps://juser.fz-juelich.de/record/1025644/files/Archiv%20der%20Pharmazie%20-%202024%20-%20Schmitz%20-%20Extracting%20binding%20energies%20and%20binding%20modes%20from%20biomolecular%20simulations%20of-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025644 8564_ $$uhttps://juser.fz-juelich.de/record/1025644/files/Archiv%20der%20Pharmazie%20-%202024%20-%20Schmitz%20-%20Extracting%20binding%20energies%20and%20binding%20modes%20from%20biomolecular%20simulations%20of-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025644 8564_ $$uhttps://juser.fz-juelich.de/record/1025644/files/Archiv%20der%20Pharmazie%20-%202024%20-%20Schmitz%20-%20Extracting%20binding%20energies%20and%20binding%20modes%20from%20biomolecular%20simulations%20of-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025644 909CO $$ooai:juser.fz-juelich.de:1025644$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025644 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172887$$aForschungszentrum Jülich$$b1$$kFZJ
001025644 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
001025644 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001025644 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001025644 9141_ $$y2024
001025644 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001025644 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001025644 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001025644 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2023-10-21
001025644 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
001025644 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001025644 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2023-10-21
001025644 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025644 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
001025644 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bARCH PHARM : 2022$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001025644 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bARCH PHARM : 2022$$d2025-01-07
001025644 920__ $$lyes
001025644 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
001025644 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
001025644 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
001025644 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x3
001025644 980__ $$ajournal
001025644 980__ $$aVDB
001025644 980__ $$aUNRESTRICTED
001025644 980__ $$aI:(DE-Juel1)IBG-4-20200403
001025644 980__ $$aI:(DE-Juel1)JSC-20090406
001025644 980__ $$aI:(DE-Juel1)NIC-20090406
001025644 980__ $$aI:(DE-Juel1)IBI-7-20200312
001025644 9801_ $$aFullTexts