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A B S T R A C T

This work studies synergies arising from combining industrial demand response and local renewable electricity
supply. To this end, we optimize the design of a local electricity generation and storage system with an
integrated demand response scheduling of a continuous power-intensive production process in a multi-stage
problem. We optimize both total annualized cost and global warming impact and consider local photovoltaic
and wind electricity generation, an electric battery, and electricity trading on day-ahead and intraday market.
We find that installing a battery can reduce emissions and enable large trading volumes on the electricity
markets, but significantly increases cost. Economically and ecologically-optimal operation of the process and
battery are driven primarily by the electricity price and grid emission factor, respectively, rather than locally
generated electricity. A parameter study reveals that cost savings from the local system and flexibilizing the
process behave almost additively.
1. Introduction

Renewable electricity has a varying supply that leads to time-
varying electricity prices on the electricity markets. The time-varying
prices can incentivize flexible industrial processes to adapt their mo-
mentary production rate and, thus, power consumption in a demand
response (DR) scheduling, which can reduce operational cost and is
considered electricity grid balancing (Daryanian et al., 1989; Zhang and
Grossmann, 2016; Burre et al., 2020; Mitsos et al., 2018). DR savings
can be improved by participating in multiple short-term electricity
markets, see, e.g., Leo et al. (2021), Dalle Ave et al. (2019), Simkoff
and Baldea (2020), Liu et al. (2016), Pandžić et al. (2013), Kwon
et al. (2017), Golmohamadi and Keypour (2018), Nolzen et al. (2022),
Germscheid et al. (2022, 2023), Schäfer et al. (2019) and Varelmann
et al. (2022). Furthermore, flexible operation should be accounted for
at design stage in order to determine optimal investment decisions
for both the production processes itself, see, e.g., Mitra et al. (2014),
Teichgraeber and Brandt (2020), Steimel and Engell (2015), Seo et al.
(2023) and Leenders et al. (2019), and for its local energy supply
system, see, e.g., Yunt et al. (2008), Zhang et al. (2019), Voll et al.
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(2013), Baumgärtner et al. (2019), Langiu et al. (2022), Bahl et al.
(2017) and Fleschutz et al. (2023).

In local energy supply systems, integrated design and scheduling
has already been used to optimize on-site renewable electricity genera-
tion and storage systems. In the corresponding studies, the considered
systems satisfy a fixed demand profile but can offer flexibility by
combining different electricity generation technologies, see, e.g., Zhang
et al. (2019), Bahl et al. (2017), Fleschutz et al. (2023) and Baumgärt-
ner et al. (2019). Furthermore, combining on-site renewable electricity
generation and storage systems with flexible production processes can
reduce both production cost and CO2 emissions, which has been shown
for, e.g., a water electrolyzer in combination with Power-to-X pro-
cesses (Mucci et al., 2023), ammonia and nitric acid production (Wang
et al., 2020), ammonia generation (Allman and Daoutidis, 2018), and
methanol production (Martín, 2016). Further power-intensive, flexible
production processes could benefit from the combination with on-site
renewable electricity supply, e.g., the chlor-alkali electrolysis (Brée
et al., 2019), seawater desalination (Ghobeity and Mitsos, 2010), or
air separation (Ierapetritou et al., 2002). However, to the best of
our knowledge, a generalized assessment about synergies arising from
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combining on-site electricity supply systems and DR-capable processes
has not been conducted yet.

In our prior work (Germscheid et al., 2022), we conducted a DR
potential assessment of power-intensive production processes by means
of the generalized process model introduced by Schäfer et al. (2020).
The generalized process model can represent a wide range of con-
tinuous production processes by means of few key process charac-
teristics, i.e., oversizing, minimal part load, ramping limitations, and
production storage capacity. We analyzed the benefit of participating
simultaneously in both the day-ahead (DA) and the intraday (ID) spot
electricity market, but neglected potential electricity provision by on-
site renewable electricity generation and storage (Germscheid et al.,
2022).

In this article, we extend our prior work (Germscheid et al., 2022)
by integrating the scheduling of the generalized production process into
the design optimization of a local electricity generation and storage
system. In the resulting multi-stage approach, we optimize the design of
the local renewable electricity supply system considering photovoltaic
(PV) power, wind power, and an electric battery for a location in Ger-
many. On the lower stages, we optimize the DR scheduling of both the
energy system and the process, together with the electricity market par-
ticipation. We consider both economic and ecologic design objectives,
i.e., we optimize with respect to the total annualized cost (TAC) and
the global warming impact (GWI), respectively. We study the influence
of different degrees of process flexibility on the optimal design of the
energy system and the resulting ecologic and economic savings. Similar
to our prior work (Germscheid et al., 2022), we consider simultaneous
market participation in both the DA and ID electricity market to analyze
the benefit of considering multiple electricity markets in an integrated
design and scheduling problem.

The remainder of the article is structured as follows: Section 2.1
explains the structure of the integrated design and scheduling problem.
We specify the objectives in Section 2.2 and the operational constraints
in Section 2.3. The scenarios and the model parameters are specified
in Sections 2.4 and 2.5, respectively. We discuss the optimal energy
system design for a reference process in Section 3.1, the dependency
between process parameters and potential savings in Section 3.2, and
the benefit of considering simultaneous DA and ID market participation
at design stage in Section 3.3. In Section 4, we conclude our work.

2. Methods

2.1. Structure of the integrated design and scheduling problem

Integrated design and scheduling problems are often set up as two-
stage stochastic problems (Birge and Louveaux, 2011) with the design
decisions on the first stage and scheduling decisions and operational
constraints on the second stage, see, e.g., Yunt et al. (2008), Zhang
et al. (2019), Langiu et al. (2022), Mitra et al. (2014), Teichgraeber
and Brandt (2020), Steimel and Engell (2015), Seo et al. (2023) and
Bahl et al. (2018). In this work, we determine the optimal design of
a local electricity supply system for a flexible industrial production
process. We account for simultaneous DA and ID market participation
in the design and scheduling problem by the three-stage structure
shown in Fig. 1. In the first stage, the design decisions for the energy
system are made, i.e., photovoltaic (PV), wind power, and electric
battery capacities are to be determined. The DA trading decisions are
taken the day before the operation when the ID price and renewable
electricity generation are still uncertain. Thus, we consider the DA
decisions on the second stage and ID trading and operational decisions
on the third stage. In particular, the operation of the flexible process is
adapted on the third stage in response to realizations of the ID price,
renewable electricity production, and the momentary emission factor of
the grid electricity. Note that we consider a time-varying average grid
2

emission factor similar to Baumgärtner et al. (2019) and Nilges et al. O
(2023) and that the emission factor is uncertain a day before the actual
consumption.

Similar to our prior work (Germscheid et al., 2022), we consider
hourly DA purchases and quarter-hourly ID purchases and sales and
assume a one-day scheduling horizon. In addition, we allow selling
electricity from the local generation and storage system on the DA
market. For simplicity, we assume that throughout any quarter-hour
time slice, renewable electricity generation is constant.

In the following, we omit a distinct notation for second- and third-
stage parameters and variables for better readability. In particular, we
consider DA trading decisions 𝒒DA,𝑠3 and DA price 𝒄DA,𝑠3 on the third
stage instead of the second stage and guarantee equality on the second
stage by means of non-anticipativity constraints:

𝒄DA, 𝑠3 = 𝒄DA,�̂�3 if 𝑓 (𝑠3) = 𝑓 (�̂�3) ∀(𝑠, �̂�) ∈ S3 × S3, (1)

𝒒DA, 𝑠3 = 𝒒DA,�̂�3 if 𝑓 (𝑠3) = 𝑓 (�̂�3) ∀(𝑠, �̂�) ∈ S3 × S3 (2)

Here, 𝑓 ∶ S3 ←←→ S2 maps a node on the third stage of the decision tree,
i.e., 𝑠3 ∈ S3, to the respective node on the second stage, i.e., 𝑠2 ∈ S2. In
the following, we refer to 𝑠 ∈ S instead of 𝑠3 ∈ S3 for conciseness and
we use 𝑠 for indexing the scenarios, i.e., paths in the decision tree.

2.2. Objectives

We consider the total annualized cost (TAC) and the global warming
impact (GWI) as economic and ecologic objective, respectively.

The TAC is defined as

TAC = CAPEX + OPEX𝑒𝑙 + OPEX𝐺𝑟𝑖𝑑 , (3)

with CAPEX =
∑

𝑖∈{PV,W,B}

(

(𝛾1 + 1)𝛾2,𝑖𝛾1
(𝛾1 + 1)𝛾2,𝑖 − 1

CAPEX0
𝑖 𝑄𝑖 + 𝛾3,𝑖 𝑄𝑖

)

, (4)

OPEX𝑒𝑙 = 365
∑

𝑠∈S
𝜋𝑠(4 𝛥𝑡 𝒄DA,s ⋅ 𝒒DA,s + 𝛥𝑡 𝒄ID,𝑠 ⋅ 𝒒ID,𝑠), (5)

OPEXGrid = 365
∑

𝑠∈S
𝜋𝑠

𝑇
∑

𝑡=1
OPEXGrid,𝑠,𝑡, (6)

OPEXGrid,𝑠,𝑡 ≥ 𝑐Fee 𝛥𝑡 (𝑞DA,s,⌊ 𝑡−1
4 ⌋+1 + 𝑞ID,𝑠,𝑡), (7)

OPEXGrid,𝑠,𝑡 ≥ 0. (8)

n Eq. (3), we compute the TAC as the sum of investment cost, CAPEX,
nd operational cost, OPEX. According to current legislation in Ger-
any (Status 2023), the grid fee has to be paid in addition to the market
rice for electricity removed from the electricity grid (Bundesminis-
erium der Justiz der Bundesrepublik Deutschland, 2022). Thus, we
onsider both annual operational cost from electricity procurement,
PEX𝑒𝑙, as well as annual grid fee cost, OPEX𝐺𝑟𝑖𝑑 . Eq. (4) specifies the

nvestment cost of the local electricity generation and storage system
onsidering photovoltaic (PV), wind power (W), and electric battery
B). Similar to Baumgärtner et al. (2019), we calculate the annualized
APEX based on the total investment cost CAPEX0

𝑖 , the present value
actor with interest rate 𝛾1 and life time 𝛾2,𝑖 (Broverman, 2010), a
aintenance factor 𝛾3,𝑖, and the installed capacity of the respective

technology 𝑄𝑖. Note that in contrast to Baumgärtner et al. (2019),
we consider a component-specific life time 𝛾2,𝑖. Eq. (5) defines the
electricity cost OPEX𝑒𝑙 by the purchases and sales on hourly DA and
quarter-hourly ID electricity market 𝒒DA,s and 𝒒ID,𝑠, the DA and ID
electricity price 𝒄DA,s and 𝒄ID,𝑠, the time step size 𝛥𝑡 = 0.25 h, and
he probability 𝜋𝑠 of scenario 𝑠. In Eq. (6), the grid cost OPEXGrid is
erived from the sum of the grid cost OPEXGrid,𝑠,𝑡 of each scenario 𝑠
nd time step 𝑡 with a total of 96 time steps for the one-day scheduling
orizon, i.e, 𝑇 = 96. Eq. (7) and Eq. (8) constitute lower bounds for
PEXGrid,𝑠,𝑡, which ensure that OPEXGrid,𝑠,𝑡 is equal to zero in case of
lectricity injection into the grid and greater or equal to the grid fee
ith the grid fee cost 𝑐Fee in case of electricity removal from the grid.

PEXGrid,𝑠,𝑡 is equal to the respective lower limit, i.e., zero or the grid
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Fig. 1. Structure of the integrated design and scheduling problem: The problem structure allows optimizing the design of the local electricity generation and storage system while
considering simultaneous DA and ID market participation and process DR. The decision tree models the chronological sequence of decisions. Each branch represents the realization
of an uncertain parameter and each node represents a decision point.
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fee, when minimizing the TAC. Note that in OPEXGrid,𝑠,𝑡, 𝑞ID,𝑠,𝑡 varies
quarter-hourly and 𝑞DA,𝑠,𝑡 varies hourly.

The expected annual GWI is computed as:

GWI =365
∑

𝑠∈S
𝜋𝑠

𝑇
∑

𝑡=1

(

GWIel
𝑠,𝑡 𝛥𝑡 (𝑞DA,s,⌊ 𝑡−1

4 ⌋+1 + 𝑞ID,𝑠,𝑡)
)

+
∑

𝑖∈{PV,W,B}

GWIi𝑄i
𝛾2,i

(9)

Eq. (9) considers the quarter-hourly average GWI of the electricity from
the grid GWIel

𝑠,𝑡, the GWI of the installed PV, wind power, and battery
capacity, i.e., GWIPV, GWIW, and GWIB, and their respective life time
𝛾2,𝑖 in years. Consequently, the total annual GWI depends on hourly
and quarter-hourly purchases and sales from the DA and ID market
𝑞DA,s,t and 𝑞ID,s,t, respectively, and the installed PV, wind, and battery
capacities, i.e., QPV, QW, and QB, respectively. Note that we allow for
a GWI credit, i.e., negative GWI, in case of electricity sales accounting
for an avoided emission burden (Horne et al., 2009).

2.3. Operational constraints

In the following, we shortly describe the generalized process model
from our prior work (Schäfer et al., 2020; Germscheid et al., 2022) and
discuss the operational constraints specific to the local energy system
and the electricity trading.

The generalized process model (Schäfer et al., 2020) relies on
few key parameters to describe the DR capabilities. In this work, we
consider the key characteristics oversizing, minimal part load, product
storage capacity with cyclic storage constraints, and ramping limita-
tion. Note that without efficiency losses, the production rate of the
process scales directly with the process power intake. For a detailed
explanation of the generalized process model, including the model
equations, we refer to Germscheid et al. (2022).

In the electricity generation and storage system, we consider the DA
and ID purchases and sales 𝑞DA,s,t and 𝑞ID,s,t, respectively, with positive
values corresponding to purchases. In addition, we consider that the
electricity purchases, PV power 𝑞PV,𝑠,𝑡, wind power 𝑞W,𝑠,𝑡, and battery
charge and discharge 𝑞in,𝑠,𝑡 and 𝑞out,𝑠,𝑡 are equal to the power intake 𝑝𝑠,𝑡
of the production process by the energy balance:

𝑝𝑠,𝑡 = 𝑞DA,s,⌊ 𝑡−1
4 ⌋+1 + 𝑞ID,𝑠,𝑡 + 𝑞PV,𝑠,𝑡 + 𝑞W,𝑠,𝑡 − 𝑞in,𝑠,𝑡 + 𝑞out,𝑠,𝑡 (10)

Additionally, we consider operational constraints similar to Baumgärt-
ner et al. (2019):

𝑞PV,𝑠,𝑡 = 𝑞PV,𝑠,𝑡 𝑄PV, (11)

𝑞W,𝑠,𝑡 = 𝑞W,𝑠,𝑡 𝑄W, (12)

0 ≤ 𝑞in,𝑠,𝑡 ≤ 𝑄B∕𝜏, (13)

0 ≤ 𝑞out,𝑠,𝑡 ≤ 𝑄B∕𝜏, (14)
3

0 ≤ 𝑆𝑂𝐶𝑠,𝑡 ≤ 𝑄B, (15)
𝑆𝑂𝐶𝑠,𝑡+1 = 𝑆𝑂𝐶𝑠,𝑡 + (𝜂in𝑞in,𝑠,𝑡 −
𝑞out,𝑠,𝑡
𝜂out )𝛥𝑡, (16)

𝑆𝑂𝐶𝑠,1 = 𝑆𝑂𝐶𝑠,𝑇+1 (17)

ere, Eq. (11) and Eq. (12) define the PV and wind power generation,
PV,𝑠,𝑡 and 𝑞W,𝑠,𝑡, by multiplying the relative power output, 𝑞PV,𝑠,𝑡 and
̄W,𝑠,𝑡, with the installed PV and wind capacity, 𝑄PV and 𝑄W, respec-
tively. Eq. (13) and Eq. (14) constrain the battery charge and discharge,
i.e., 𝑞in,𝑠,𝑡 and 𝑞out,𝑠,𝑡, respectively, by the installed battery capacity 𝑄B
nd the allowed charging and discharging rate 𝜏. Eq. (15) constrains the
tate of charge 𝑆𝑂𝐶𝑠,𝑡 by the installed battery capacity 𝑄B. Eq. (16)
elates charging and discharging with respective efficiency losses 𝜂in

nd 𝜂out and the state of charge. Additionally, we consider the cyclic
onstraint, Eq. (17), requiring that the state of charge is the same at
he beginning and at the end of the scheduling horizon.

We consider trading electricity on both DA and ID market while
aking use of the local energy system:

−𝑞PV,𝑠,𝑡 − 𝑞W,𝑠,𝑡 −𝑄B∕𝜏 ≤ 𝑞DA,s,⌊ 𝑡−1
4 ⌋+1, (18)

−𝑞PV,𝑠,𝑡 − 𝑞W,𝑠,𝑡 − 𝑆𝑂𝐶𝑠,𝑡∕𝛥𝑡 ≤ 𝑞DA,s,⌊ 𝑡−1
4 ⌋+1, (19)

−𝑞DA,s,⌊ 𝑡−1
4 ⌋+1 − 𝑞PV,𝑠,𝑡 − 𝑞W,𝑠,𝑡 −𝑄B∕𝜏 ≤ 𝑞ID,𝑠,𝑡, (20)

𝑞DA,s,⌊ 𝑡−1
4 ⌋+1 − 𝑞PV,𝑠,𝑡 − 𝑞W,𝑠,𝑡 − 𝑆𝑂𝐶𝑠,𝑡∕𝛥𝑡 ≤ 𝑞ID,𝑠,𝑡, (21)

DA,s,⌊ 𝑡−1
4 ⌋+1 ≤ 𝑃nom(1 + 𝜃max) +𝑄B∕𝜏, (22)

𝑞DA,s,⌊ 𝑡−1
4 ⌋+1 ≤ 𝑃nom(1 + 𝜃max) +

𝑄B − 𝑆𝑂𝐶𝑠,𝑡

𝛥𝑡
, (23)

𝑞ID,𝑠,𝑡 ≤ 𝑃nom(1 + 𝜃max) +𝑄B∕𝜏, (24)

𝑞ID,𝑠,𝑡 ≤ 𝑃nom(1 + 𝜃max) +
𝑄B − 𝑆𝑂𝐶𝑠,𝑡

𝛥𝑡
(25)

Here, Eqs. (18)–(21) constrain DA and ID sales by produced PV and
wind power, the current state of charge, and maximum discharging ca-
pabilities of the installed battery. Similar to our prior work (Germscheid
et al., 2022), Eqs. (20) and (21) allow selling previously purchased
DA electricity on the ID market. Eqs. (22)–(25) constrain DA and
ID purchases by the maximum power consumption of the production
process and the battery. The maximum consumption of the process is
defined by the nominal consumption 𝑃nom and the process oversizing
𝜃max. The maximum consumption of the battery is given by the state of
charge and the charging capabilities of the battery.

2.4. Time series

In the following, we specify the time series representing realiza-
tions of uncertain parameters in the assessment and refer to them as
scenarios in this context.

We base our scenarios for the electricity price, wind power gen-
eration, PV power generation, and grid emission factor on historical
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Fig. 2. Mean and mean daily standard deviation of ID electricity price (a) and market deviation (b), i.e., the price difference between the DA and the ID price.
time series. Specifically, for the electricity price, we use data from the
German DA and ID spot market (Fraunhofer Institute for Solar Energy
Systems ISE, 2023), assuming that the consumer can purchase and sell
electricity at DA market-clearing price and ID index price. We refer
to Germscheid et al. (2022) for a detailed explanation about these
assumptions. Fig. 2 shows the annual mean and the annual mean daily
standard deviation of the ID electricity market price and the market
deviation, i.e., the difference between the DA and the ID price. The
corresponding figure for the DA price shows similar characteristics
as the one of the ID price and can be found in Section 1 of the
supporting material. Fig. 2(a) reveals a price decrease in 2020 that can
be attributed to the initial phase of the COVID-19 pandemic (Halbrügge
et al., 2021) and an increase of mean and standard deviation in 2021
and 2022 due to the conflict in the Ukraine (Haucap and Meinhof,
2022). Fig. 2(b) reveals that in 2020 and 2021, the mean ID price was
slightly larger than the mean DA price as indicated by the positive
market deviation. Moreover, the standard deviation of the market
deviation has significantly increased in 2021 and 2022.

DR scheduling optimization necessitates electricity price time series
rather than an average annual electricity price. Long-term German
electricity price forecasting is challenging, e.g., due to the conflict
in Ukraine and the German energy transition. The time series for
2030 derived by the project MONA 2030 (Forschungsstelle für En-
ergiewirtschaft e. V., 2017) used in Schäfer et al. (2020) and the
prices for 2050 reported in Hecking et al. (2018) are outdated. For
our assessment, we require a time series of both DA and ID prices for
which, to the best of our knowledge, no forecasts exists. Therefore, we
pragmatically consider the time series of the years 2020, 2021, and
2022 in our analysis, assuming that these represent scenarios for low,
medium, and high future electricity prices.

To compute the corresponding historical wind and PV power time
series, we use weather data for Aachen, Germany, from the German
weather service (Deutscher Wetterdienst, 2023; Gutzmann and Motl,
2023). Specifically, we pre-process the measured wind speed, global
radiation, and diffuse radiation similar to Bahl et al. (2017) and obtain
the relative PV and wind power generation as discussed in detail
in Section 2 of the supporting material. Section 1 of the supporting
material shows the mean and the standard deviation of the historical
wind speed and solar irradiance that stay within rather narrow ranges,
with 2020 as a windier year and 2022 as a sunnier year.

Following Baumgärtner et al. (2019) and Nilges et al. (2023), we
determine the average emission factor of electricity from the German
grid for every time step, i.e., GWIel

𝑠,𝑡 used in Eq. (9), by considering the
momentary mix of power sources and their respective emission factors
based on data of Bundesnetzagentur|smard.de (2023) and the ecoinvent
4

database (Wernet et al., 2016), respectively.
Fig. 3. Approach to determine scenarios based on historical time series data: The
colored dots refer to the multi-dimensional data points that represent (concatenated)
time series data.
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Table 1
Degrees of freedom: The number of degrees of freedom depends on the number of
clusters 𝑛𝑐 , the number of quarter-hourly time steps 𝑇 , and the number of scenarios
S|, with 𝑇 = 96 and |S| = 365 in our case. The operational degrees of freedom concern
he charging and discharging of the battery. Note that other optimization variables,
.g., power intake, PV power, and wind power, are not degrees of freedom, but can
e determined from equality constraints.

Degrees of freedom Explanation

Design 3 Capacities of PV, wind power, and battery
DA market 𝑛𝑐 ⋅ 𝑇 ∕4 DA electricity purchases and sales
ID market |S| ⋅ 𝑇 ID electricity purchases and sales
Operation 2 ⋅ |S| ⋅ 𝑇 Battery charging and discharging rate

Table 2
Parameters of the generalized process model: Process oversizing, minimal part load,
and ramping limit are given related to the nominal power intake. The product storage
capacity refers to the time necessary to fill an empty product storage considering
production at nominal power intake.

Parameter Reference values

Nominal power intake 2.74 MW
Process oversizing 20%
Minimal part load 50%
Product storage capacity 3 h
Ramping limit 25%/h

We determine the scenarios and the mapping between second and
hird stage of the optimization problem based on a clustering as de-
icted in Fig. 3. First, we preprocess the data by standardizing the
ind and PV power time series and the GWI time series using the

-score (Mohamad and Usman, 2013) and concatenating the daily
rofiles of wind power, PV power, and GWI time series to daily energy
rofiles. Next, we apply k-means clustering using the scikit-learn mod-
le in Python (Pedregosa et al., 2011) treating each daily energy profile
s a multi-dimensional data point. This leads to a clustering of similar
nergy profiles. We transfer the obtained clustering to the DA price and
arket deviation time series and create an average DA profile as DA
rice scenario for each cluster. We add the market deviations from all
onstituents of a respective cluster to the average DA price scenario
o obtain ID price scenarios. Note that using the market deviation
llows accounting for the inter-market correlation similar to our prior
ork (Germscheid et al., 2022). Finally, we use the mapping resulting

rom the clustering to connect the second and third stage of the
ptimization problem. Note that on the second stage, the probability
f the DA realizations depends on the cluster size. In contrast, the
ealizations on the third stage are equi-probable, i.e., 𝜋𝑠 = 1∕|S|, as the
lustering is used on the third stage to establish the mapping but not for
ata reduction. We show in Section 3 of the supporting material that
he within-cluster sum-of-squares does not allow deriving an obvious
ecision on a suitable number of clusters for the given data. For our
pplication, we look for a compromise between the number of clusters
nd number of scenarios per cluster. Pragmatically, we consider 20
lusters, which leads to roughly 18 scenarios per cluster on average.
e will discuss the impact of clustering on the results in Section 3.3.

.5. Model specifications and evaluation

Table 1 specifies the degrees of freedom of the integrated design
nd scheduling problem.

Table 2 lists reference parameters of the generalized process that
e also used in our prior work (Germscheid et al., 2022). Note that

he reference parameters are similar to the chlor-alkali electrolysis
Germscheid et al., 2022) with the exception of stricter ramping lim-
tations of the considered reference process. This stricter limitation
llows analyzing the impact of ramping restrictions on the potential
avings of the integrated design and scheduling in the parameter study
5

n Section 3.2.
Table 3
Component-specific life time, investment and maintenance cost for Germany based on
Hecking et al. (2018).

Lifetime 𝛾2,𝑖 CAPEX0
𝑖 Annual maintenance cost 𝛾2,i

Roof-top PV 25 a 927 EUR/kWp 17 EUR/kWp
Onshore wind 25 a 1113 EUR/kWp 13 EUR/kWp
Battery 15 a 550 EUR/kWh 20 EUR/kWh

We consider the parameters given in Table 3 for the CAPEX. Similar
to Sass et al. (2020), we consider an interest rate 𝛾1 = 8%. In Section 4 of
the supporting material, we list the resulting annual PV and wind elec-
tricity generation cost, showing that wind power has lower production
cost than PV due to a higher average utilization rate. For the GWI of the
electricity generation and storage system, we use data of the ecoinvent
database 3.9.1 (Wernet et al., 2016) that we specify in Section 4 of the
supporting material for reproducibility. For the battery, we consider
a charging and discharging rate of 4 h (Tesla, 2023), i.e., 𝜏 = 4 h,
and a round-trip efficiency of 90% (Hecking et al., 2018), i.e.,

√

𝜂in =
√

𝜂out =
√

0.9. Moreover, we consider the average grid fee cost of 2022
or industrial consumers in Germany, i.e., 𝑐Fee = 29.6 EUR/MWh (Bun-

desnetzagentur und Bundeskartellamt, 2022). Furthermore, we choose
the nominal capacity of the power-intensive production process such
that the process is classified as an industrial consumer, i.e., 24 GWh per
year (Bundesnetzagentur und Bundeskartellamt, 2022), which allows
the process operator to benefit from lower grid fees compared to
non-industrial consumers (Bundesnetzagentur und Bundeskartellamt,
2022).

We expect the maximum allowed capacities of the energy system
to have an impact on the optimization results. Pragmatically, we first
restrict the admissible capacities for wind power and PV by the nominal
power intake, i.e., 𝑄max

W = 𝑄max
PV = 𝑃nom. We choose the admissible

battery size such that the maximum discharge rate corresponds to the
nominal power intake of the production process, i.e., 𝑃nom = 𝑄max

B ∕𝜏.
In Section 3.2, we then analyze the impact of the maximum allowed
energy system capacities on the TAC in detail.

We implement the model in Pyomo (Hart et al., 2011) and use the
solver Gurobi 9.5.0 (Gurobi Optimization, LLC, 2020) with default set-
tings on an Intel Core i7-9700 processor and 32 GB RAM. We formulate
the multi-stage problem by means of its deterministic equivalent.

3. Results

In the following, we analyze the synergies between the local en-
ergy system and the flexible production process and the benefit of
considering simultaneous market participation at design stage. To this
end, we first consider market participation only in the ID market and
discuss the optimal design and savings of the local energy system
(Section 3.1) as well as the impact of the process flexibility on the
potential savings (Section 3.2). Note that we select the ID market
instead of the DA market, as the ID market allows adapting the elec-
tricity procurement in response to realization of the uncertainty in the
renewable electricity supply. We then show the difference between
single and simultaneous market participation and discuss the energy
system design in the context of DR scheduling with simultaneous DA
and ID market participation (Section 3.3).

3.1. Design and operation for single market participation

In the following, we evaluate the energy system design considering
only the ID market for the reference process defined in Table 2.

Fig. 4 shows Pareto-optimal energy system designs based on the
time series for 2020, 2021, and 2022. In three cases, the ecologic
and economic objectives lead to competing solutions. Interestingly, the
TAC-optimal solutions do not contain a battery, as potential savings
from operating the battery do not outweigh the battery investment
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Fig. 4. Energy system design for ID market-only participation: Pareto-optimal solutions are given for 2020 (left), 2021 (center), and 2022 (right). For each year, the TAC-optimal,
he GWI-optimal, and three intermediate Pareto-optimal solutions are shown, which are equi-distant with respect to GWI. GWI and TAC (lower part) are given with vertical gray
ashed lines pointing to the respective optimal capacities of the local electricity supply system (upper three parts). Additionally, the TAC- and GWI-optimal DR as well as the
teady-state operation without a local energy system are given for comparison.
ost. High electricity prices in 2021 and 2022 incentivize both on-
ite wind and PV electricity generation in the TAC-optimal solutions,
hereas only wind electricity generation is used in 2020. The pref-
rence for wind can be explained by the higher average utilization
ate (see Section 4 of the supporting material). In contrast, battery,
V, and wind generation capacities are built at maximum capacity for
ll GWI-optimal solutions, irrespective of the year studied. However,
ntegrating a battery leads to a large increase in TAC with only a small
mprovement in GWI, as can be seen from the shape of the Pareto front.

Fig. 4 reveals that for 2022, the two designs with the lowest GWI
ave identical PV, wind power, and battery capacities but have notable
ifferences in TAC and GWI, indicating different operating strategies.
ig. 5 shows the operation for an exemplary day given a fixed energy
ystem design and confirms these findings. In particular, the electricity
rice and grid emission factor (Fig. 5(a)) set different incentives for
AC-optimal and GWI-optimal operation of the process (Fig. 5(c)) and
he battery (Fig. 5(d)). Note that an alignment of electricity price and
rid emission factor could be achieved by increasing renewable energy
enetration in the grid as well as a sufficiently high CO2 price (Nilges

et al., 2024). In case of a high renewable energy penetration in the grid,
the benefit of on-site renewable generation would decrease. However,
on-site generation would still be advantageous as it partially avoids
grid fee cost and electricity losses due to long-distance transmission,
reduces the need to expand the electricity grid, and helps avoiding the
emissions and costs associated to grid expansion.

Fig. 5(c) additionally shows the process operation without a local
energy system, revealing a similar DR schedule as for a process with a
local system. Similarly, Fig. 5(d) shows the battery operation with and
without local renewable electricity generation revealing a similar oper-
6

ating pattern with only minor differences. We attribute this behavior to
the time-varying incentives for DR at the operational level, i.e., the elec-
tricity price and the grid emission factor. The incentives predominantly
influence the operation of the process and the local energy system,
while on-site generated electricity has a minor influence.

Fig. 4 suggests that the difference between steady-state operation
and DR without local energy system remains rather similar. In contrast,
the difference between DR without energy system and DR with a local
energy system increases each year in particular with respect to the TAC.
Table 4 compares ecologic and economic savings, i.e., savings with
respect to the GWI and cost, respectively, resulting from DR and the
local energy system and confirms these findings. The absolute economic
savings from DR in comparison to steady-state operation increase due
to the increasing standard deviation of the electricity price (Fig. 2(a)).
The relative and absolute economic savings resulting from the energy
system increase due to the increasing grid electricity cost. In particular,
the savings increase significantly from 1.4% in 2020 to 22.8% in 2022.
Looking at the GWI-optimal solution, the ecologic savings resulting
from the energy system are much larger than the savings from DR
in comparison to steady-state operation. Furthermore, the ecologic
savings are somewhat similar in all years, i.e., between 30.3% and
35.6%, and the variance can be attributed to the natural variability of
PV and wind power production and the varying grid emission factor.

3.2. Parameter study of process flexibility and energy system capacity

In the following, we analyze the impact of process flexibility and
admissible energy system capacities on TAC and GWI.

For a parameter study on the process flexibility, we fix all process
parameters to their respective reference values as defined in Table 2
and vary one process parameter at a time between the value corre-
sponding to an inflexible process and the value corresponding to twice
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Fig. 5. Process and energy system operation for an exemplary day in 2022 (ID-only market participation): An energy system design with maximum admissible PV, wind power,
and battery capacities is considered. The operation is shown for the ID electricity price and emission factor (a) and the renewable electricity generation (b). The process operation
determines the electricity consumption (c). The battery operation determines the state of charge (d).
the flexibility of the process parameter. Fig. 6 shows the impact of
varying degrees of process flexibility on the TAC-optimal DR without
a local energy system, the economic savings enabled by a local energy
system, and the optimal capacities of the local electricity generation
and storage. Fig. 6(a) (top) shows exemplary for 2020 that without
a local energy system, the flexible process particularly benefits from
oversizing. Behaviors for 2021 and 2022 are similar and thus the cor-
responding figures are omitted. The results confirm the findings of our
prior work (Germscheid et al., 2022), where we considered price data
of 2019. Furthermore, Fig. 6(a) (bottom) shows the optimal capacities
of the energy system components and reveals that the optimal wind
capacity for 2020 slightly decreases with a high degree of process
oversizing. Thus, process flexibility can impact the optimal energy
system capacity. Corresponding figures for 2021 and 2022 are omitted,
as no impact of the process flexibility on the resulting optimal designs
can be found.

Fig. 6 reveals that the range of the economic savings due to a
local energy system for any given year is rather narrow, i.e., varying
the process flexibility does not impact the relative savings in a strong
manner. Even though the range is small, varying the process oversizing
7

has the largest leverage on the savings in comparison to the other
process parameters. Interestingly, the impact of the process parame-
ters may differ depending on the investigated year, as higher process
flexibility actually leads to lower relative savings in 2020 (Fig. 6(a),
center) whereas higher relative savings are recorded for 2021 and
2022 (Fig. 6(b)). However, an analysis of the cost contributions shows
exemplary for varying oversizing that the absolute TAC monotonously
decreases, irrespective of the case with or without a local energy system
(see Section 5 of the supporting material).

Fig. 7 shows the optimal TAC for varying admissible energy system
size and process oversizing, the latter having the largest flexibility
leverage for the economic savings. Specifically, we vary the maximum
allowed energy system capacities, i.e., 𝑄max

W , 𝑄max
PV , and 𝑄max

B , by a joint
scaling factor. Corresponding optimal capacities of the energy system
can be found in Section 5 of the supporting material. For 2020, process
oversizing has a larger leverage on the TAC than local electricity
generation and storage. Furthermore, the TAC remains constant for
scaling factors larger than one, as a cost-optimal maximum of the wind
power capacity is attained (see Section 5 of the supporting material).
For 2021 and 2022, it can be seen that local electricity generation and
storage is more economically attractive than process flexibility.

Interestingly, the absolute savings of the TAC-optimal solution en-

abled by a higher process flexibility and by a larger energy system
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Fig. 6. Economic impact of different degrees of process flexibility: The TAC-optimal cost of DR without energy system (a, top), the savings due to a local energy system (a, center),
and optimal energy system design (a, bottom) for 2020 are shown. Furthermore, the savings due to a local energy system are shown for 2021 (b, top) and 2022 (b, bottom).
Table 4
Economic and ecologic savings due to DR and local electricity generation and storage.
The savings are compared for the TAC-optimal solutions (upper part) and the GWI-
optimal solutions (lower part). Single market participation in the ID market is
considered.

2020 2021 2022

TAC-optimal solution

DR vs. steady-state operation (no energy system)
Relative economic savings 4.3% 4.2% 4.6%
Absolute economic savings [kEUR] 56 123 288

DR with energy system vs. DR without energy system
Relative economic savings 1.4% 8.8% 22.8%
Absolute economic savings [kEUR] 17 245 1349

GWI-optimal solution

DR vs. steady-state operation (no energy system)
Relative ecologic savings 2.5% 2.2% 2.6%
Absolute ecologic savings [ktCO2

/a] 0.3 0.3 0.3

DR with energy system vs. DR without energy system
Relative ecologic savings 35.4% 30.3% 35.6%
Absolute ecologic savings [ktCO2

/a] 3.6 3.5 4.3

behave roughly additively, which is shown exemplary for 2022 in
Fig. 7. Section 5 of the supporting material shows the relative difference
between the optimal TAC and the estimated TAC, the latter being de-
fined as the sum of the absolute savings from process flexiblization and
installation of a local energy system. The difference being rather small,
8

i.e., less than 0.5%, means that a quick first approximate economic
assessment can be performed by considering the savings from DR and
the cost savings from a local energy system independently.

Fig. 8 shows the impact of varying degrees of process flexibility on
the GWI-optimal solution exemplary for 2020. Figures for the other
years show similar behavior and are therefore omitted. Fig. 8(a) shows
the case of DR without a local energy system and reveals that the
process oversizing and the product storage capacity have the largest
impact on the GWI. This finding is consistent with the results of our
prior work Schäfer et al. (2020), where we considered the residual load
as ecologic objective instead of the GWI. Fig. 8(b) shows that process
oversizing and product storage capacity have the largest leverage on the
ecologic savings. Note that, in general, the degree of process flexibility
has a rather low impact on the range of the ecologic savings.

3.3. Simultaneous market participation

Finally, we evaluate the benefit of considering simultaneous DA
and ID market participation in the integrated design and scheduling
problem. Table 5 compares the average wall-clock run times of the
single and the simultaneous market participation. As expected, the
single market participation is slightly faster than the simultaneous
participation that additionally contains the DA trading decisions.

Table 6 lists the TAC-optimal designs for the reference process.
Designs for 2020 and 2021 do not reveal differences to the case of
ID-only market participation, i.e., the price differences between the
markets in these years are not large enough to incentivize the instal-
lation of a battery. In contrast, a battery is built for the simultaneous

market participation in 2022 as the battery offers trading capacity
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Fig. 7. Optimal TAC [EUR] with varying process oversizing and maximum admissible energy system capacity for 2020 (left), 2021 (center), and 2022 (right): For 2022, the
approximately additive behavior of the absolute savings is shown exemplary in red.
Fig. 8. Ecologic impact of varying process flexibility for 2020: GWI-optimal DR without a local energy system (a) and relative savings due to installation of a local system (b)
are shown.
Table 5
Run time comparison of single and simultaneous market participation: The stated wall-
clock times of the integrated design and scheduling problem are the averages over 15
Pareto-optimal solutions (5 Pareto-optimal solutions per year). The solver Gurobi 9.5.0
(Gurobi Optimization, LLC, 2020) was used and the machine was equipped with an
Intel Core i7-9700 processor and 32 GB RAM.

Run time

Single market participation 21.8 s
Simultaneous market participation 29.6 s

for exploitation of large price differences between the DA and ID
market. The Pareto-optimal energy system designs of 2022 vary with
respect to the battery capacity for the simultaneous DA and ID market
participation compared to the ID-only case and are shown in Section 6
of the supporting material.

Table 6 compares single and simultaneous market participation with
respect to the electricity purchases and sales. It shows that for ID-only
participation more electricity is purchased in 2020, compared to 2021
and 2022, which are years with larger optimal PV and wind power
capacities. For the simultaneous participation in 2020, the majority of
the electricity is purchased on the DA market due to the positive price
difference (Fig. 2(b)). The combination of PV and wind enables higher
DA sales in 2021. Moreover, total purchases and sales significantly
9

increase for the simultaneous participation in 2022 due to an increased
trading capacity enabled by the battery.

Table 7 shows that the relative savings of simultaneous market par-
ticipation compared to single market participation stay within a similar
range, irrespective of the considered year. In contrast, the absolute
savings increase each year due to the increased variance of the market
deviation (Fig. 2(b)). Table 7 reveals that both the absolute and relative
savings of simultaneous market participation increase with both process
flexibilization and the integration of local electricity generation and
storage.

Table 8 shows the contributions of cost savings for the year 2022
considering TAC-optimal simultaneous market participation. Here, an
inflexible process without an energy system is modified by separately
adding a battery, renewable electricity generation, and process flexi-
blization. Table 8 reveals that the main cost savings result from the
on-site electricity generation followed by process flexiblization. The
integration of a battery accounts only for a small fraction of the savings.
Note that similar to ID-only participation (Section 3.2), summing up
the absolute savings from battery installation, renewable electricity
generation, and flexiblization, separately, allows for a good overall
savings estimate.

Similar to Section 3.2, we vary the degree of process flexibility.

Fig. 9 shows the impact of process flexibility on the optimal battery
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Table 6
System capacities and electricity trading amounts for ID-only participation (upper part)
and simultaneous DA and ID market participation (lower part): In all cases, TAC-optimal
DR of the reference process (Table 2) with a local energy system is considered. The
stated values of the ID-only participation correspond to the TAC-optimal solution from
Fig. 4.

2020 2021 2022

ID-only participation

PV capacity – 2.74 MW 2.74 MW
Wind capacity 2.74 MW 2.74 MW 2.74 MW
Battery capacity – – –

Total purchases 17,316 MWh 16,008 MWh 14,776 MWh
Total sales 62 MWh 203 MWh 357 MWh

Simultaneous market participation

PV capacity – 2.74 MW 2.74 MW
Wind capacity 2.74 MW 2.74 MW 2.74 MW
Battery capacity – – 5.31 MWh

DA purchases 18,582 MWh 16,389 MWh 18,874 MWh
ID purchases 6796 MWh 7442 MWh 12,944 MWh
Total purchases 25,378 MWh 23,831 MWh 31,818 MWh

DA sales 452 MWh 954 MWh 5947 MWh
ID sales 7678 MWh 7080 MWh 11,083 MWh
Total sales 8130 MWh 8034 MWh 17,030 MWh

Table 7
The TAC savings from simultaneous market participation compared to single market
participation for an inflexible process without an energy system (top), a flexible process
without an energy system (center), and a flexible process with an energy system
(bottom). The flexible process is the reference process (Table 2).

2020 2021 2022

Inflexible process without energy system

Relative savings 3.0% 2.0% 2.0%
Absolute savings 39.3 kEUR 57.4 kEUR 122.7 kEUR

Flexible process without energy system

Relative savings 3.8% 2.5% 2.5%
Absolute savings 47.1 kEUR 68.9 kEUR 147.2 kEUR

Flexible process with energy system

Relative savings 3.9% 2.9% 4.4%
Absolute savings 47.9 kEUR 72.8 kEUR 198.7 kEUR

Table 8
Savings contributions of simultaneous market participation in the TAC-optimal case for
2022: The savings are related to the inflexible process without an energy system (first
row). The battery capacity of the inflexible process with the battery (third row) is
identical to the flexible process with an energy system (second row).

TAC Savings

Inflexible process without energy system 6073.5 kEUR –
Flexible process with energy system 4360.9 kEUR 1712.6 kEUR

Inflexible process with battery 6044.7 kEUR 28.8 kEUR
Inflexible process with wind and PV power 4702.5 kEUR 1371.0 kEUR
Flexible process without energy system 5761.2 kEUR 312.3 kEUR

capacity for 2022. An analysis of the optimal capacities of PV and
wind power is omitted as these quantities do not vary in response
to a varying degree of process flexibility. It can be noted that larger
batteries are built for less flexible processes, in particular for processes
with part load and ramping restrictions. DR without energy system and
economic savings of DR with an energy system behave similarly to the
case of single market participation (Section 3.2), irrespective of the
investigated year. Thus, respective figures are omitted.

Recall that we pragmatically consider 20 clusters for the assessment.
In Section 6 of the supporting material, we show the results for 10
and 30 clusters. More clusters lead to higher savings enabled by the
simultaneous market participation and a larger optimal battery capacity
in 2022. In the supporting material, we show that the average standard
deviation of the market deviation decreases with increasing number
10
Fig. 9. TAC-optimal battery capacity for simultaneous market participation for 2022
with varying degree of process flexibility.

of clusters, which enables better positioning on the two markets in
case of the simultaneous participation and, thus, increases savings and
incentivizes a larger battery.

4. Conclusion

We assessed the optimal design of a local electricity generation
and storage system for a generalized continuous, power-intensive pro-
duction process that is capable of performing demand response and
can act on both the day-ahead and intraday electricity market. In a
three-stage stochastic problem, we optimized the capacities of pho-
tovoltaic power, wind power, and electric battery with an integrated
demand response scheduling of the production process. Building on
our prior work (Schäfer et al., 2020; Germscheid et al., 2022), we
used a generalized process model with few flexibility-defining param-
eters, i.e., process oversizing, minimal part load, product storage, and
ramping limitation. In a bi-objective optimization, we considered both
economic and ecological objectives. We considered scenarios of low,
intermediate, and high electricity prices for a plant location in Germany
as well as a time-varying grid emission factor.

We find that batteries are mainly built to lower the global warming
impact, however, leading to a significant increase in total annualized
cost. Economically and ecologically-optimal operation of the process
and battery primarily respond to the time-varying electricity price and
grid emission factor, but only to a little extent to the on-site generation
of renewable electricity. Varying the degree of process flexibility, we
find a rather small impact on the achievable relative economic and
ecologic savings that come with local electricity generation and storage.
Moreover, we show that the absolute cost savings from flexibilizing the
process and installing a local energy system are approximately additive.
Comparing intraday-only and simultaneous day-ahead and intraday
market participation, we find that the energy system designs are sim-
ilar for the investigated scenarios, except when high price differences
between the markets incentivize the installation of a battery. The cost-
optimal battery capacity significantly depends on the available process
flexibility, enables large volumes for trading on the markets, but comes
with only minor economic savings.

In our assessment, we pragmatically considered time series based on
historic data of three years to understand the effects of low, medium,
and high electricity prices. To account for long-term variability of
prices and the long lifetime of both the process and the energy system
equipment, our approach should be extended to consider multiple years
by incorporating long-term time series forecasting, e.g., based on the
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hourly day-ahead price forecasting of Ziel and Steinert (2018) and
Gabrielli et al. (2022) that would need to be extended to also consider
quarter-hourly intraday prices. Uncertainties associated to the forecasts
and financial risks must be particularly accounted for, e.g., in a risk-
averse optimization similar to Xuan et al. (2021) and Vieira et al.
(2021). In order to use our approach to evaluate the potential of a local
system for a specific process and location, the process characteristics
must be known and respective local weather data is required.
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