Home > Publications database > Nonlinear Manifold Learning Determines Microgel Size from Raman Spectroscopy > print |
001 | 1025659 | ||
005 | 20240709081934.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2403.08376 |2 doi |
037 | _ | _ | |a FZJ-2024-03048 |
100 | 1 | _ | |a Koronaki, Eleni D. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Nonlinear Manifold Learning Determines Microgel Size from Raman Spectroscopy |
260 | _ | _ | |c 2024 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1714639888_32508 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in-line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross-linked polymer) samples in a diameter range of 208nm to 483 nm. The conformal autoencoders substantially outperform state-of-the-art methods and results for the first time in a promising prediction of polymer size from Raman spectra. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Machine Learning (cs.LG) |2 Other |
650 | _ | 7 | |a Signal Processing (eess.SP) |2 Other |
650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
650 | _ | 7 | |a FOS: Electrical engineering, electronic engineering, information engineering |2 Other |
700 | 1 | _ | |a Kaven, Luise F. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Faust, Johannes M. M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kevrekidis, Ioannis G. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Mitsos, Alexander |0 P:(DE-Juel1)172025 |b 4 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.48550/ARXIV.2403.08376 |
909 | C | O | |o oai:juser.fz-juelich.de:1025659 |p VDB |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Johns Hopkins University |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172025 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)172025 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2024 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|