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ABSTRACT

A reliable supply with electric power is vital for our society. Transmission line failures are among the biggest threats for power grid stability
as they may lead to a splitting of the grid into mutual asynchronous fragments. New conceptual methods are needed to assess system stability
that complement existing simulation models. In this article, we propose a combination of network science metrics and machine learning
models to predict the risk of desynchronization events. Network science provides metrics for essential properties of transmission lines such
as their redundancy or centrality. Machine learning models perform inherent feature selection and, thus, reveal key factors that determine
network robustness and vulnerability. As a case study, we train and test such models on simulated data from several synthetic test grids.
We find that the integrated models are capable of predicting desynchronization events after line failures with an average precision greater
than 0.996 when averaging over all datasets. Learning transfer between different datasets is generally possible, at a slight loss of prediction
performance. Our results suggest that power grid desynchronization is essentially governed by only a few network metrics that quantify the
networks’ ability to reroute the flow without creating exceedingly high static line loadings.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175372

Modern society relies on a secure and stable supply of electric
power, which makes a failure of the electric power system espe-
cially harmful.1,2 It is, thus, of utmost importance to make
and keep it as fail-proof as possible.3 Large-scale power out-
ages are typically triggered by the failure of a single transmis-
sion line in a period of a high grid load.4 But not all failures
are equally perilous. Most failures will not cause any major
disturbance, while some are fatal. But what determines the impor-
tance of a single line? Can we find suitable indicators that
identify critical lines and provide insights into network stabil-
ity? Graph theory and network science provide various met-
rics for the importance of single nodes or lines, covering very
different aspects of importance. In this article, we develop an
interpretable machine learning model that integrates various
metrics and identifies the ones with the highest predictive power.

We apply the model to simulated data from synthetic test grids
operating at high loads and observe a very good prediction
performance.

I. INTRODUCTION

The ongoing transition to a sustainable energy system chal-
lenges the operation and stability of the electric power system.
Renewable power sources are fluctuating and uncertain such that
storage or backup infrastructures are required.5,6 Furthermore, they
are often built at places that offer favorable conditions for genera-
tion, far away from consumers, which increases grid loads.7,8 Simi-
larly, energy-intensive sectors, such as transport and heating, have
to shift away from fossil fuels and toward electrification to reduce

Chaos 34, 013139 (2024); doi: 10.1063/5.0175372 34, 013139-1

Published under an exclusive license by AIP Publishing

 01 M
ay 2024 08:26:36

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0175372
https://doi.org/10.1063/5.0175372
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0175372
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0175372&domain=pdf&date_stamp=2024-01-25
https://orcid.org/0000-0002-0249-6244
https://orcid.org/0000-0002-7089-2249
https://orcid.org/0000-0002-3478-3379
https://orcid.org/0000-0002-3623-5341
mailto:m.titz@fz-juelich.de
mailto:d.witthaut@fz-juelich.de
https://doi.org/10.1063/5.0175372


Chaos ARTICLE pubs.aip.org/aip/cha

carbon emissions,9 putting further strain on the power grid.10,11 Grid
stability, in general, is, thus, not only an important but also a timely
topic.

A central aspect of power system stability is synchronicity. All
generators in a grid have to rotate in synchrony to guarantee a steady
flow of electric power.12–14 Stability is at risk if the grid is disturbed
or damaged. In fact, most blackouts can be traced back to the out-
age of a single power system element such as a transmission line.4 In
transmission grids, which are generally strongly meshed, this initial
failure can then lead to a cascade due to overloads of other transmis-
sion lines. At some point, either directly or after some steps of the
cascade, the grid becomes dynamically unstable, and synchronicity
is lost. This scenario occurred during the 2003 Italian power outage15

and the 2006 Western European power outage.16 Notably, a desyn-
chronization does not necessarily induce a large-scale blackout if the
asynchronous fragments can be stabilized by control actions or load
shedding. In fact, two such events were observed in the Continental
European grid in 2021.17,18

To divert these catastrophes, grid operators have to be able
to judge risks in time. Warning systems that alert grid operators
are in place, and the risk regarding any single contingency can, in
principle, be assessed via simulations (see Ref. 19 for a review). How-
ever, the sheer number of potentially critical structural elements
in power grid systems makes simulating all possible contingencies
in time computationally impossible. Transmission grid operators,
thus, have to, in part, rely on heuristics and experience. Modern
machine learning methods may contribute to this assessment or the
selection of relevant contingency cases to be simulated in detail.20,21

In this article, we explore the capability of supervised machine
learning to identify line failures that lead to desynchronization. We
employ computationally cheap, static inputs that are readily avail-
able to the transmission grid operators such that models can be
evaluated rapidly. Furthermore, we focus on efficient models that
are amenable to human interpretation and, thus, enable scientific
insights.22

A key method is the combination of machine learning with
methods from graph theory and network science to develop fea-
tures that are both understandable and have a high predictive power.
Ideally, these features will directly measure a relevant quantity of
the respective line, such as its redundancy or centrality, which lend
themselves to human interpretation. Machine learning models per-
form inherent feature selection and may, thus, reveal key factors that
determine network robustness and vulnerability. Furthermore, they
can incorporate different features to improve prediction.

The article is organized as follows. In Sec. II, we will first
give an overview of the model used for power grid dynamics and
the resulting datasets. We then introduce the machine learning
models, performance metrics, and eXplainable Artificial Intelligence
(XAI) methods used. After that, we introduce a multitude of differ-
ent graph theory-based features and assess their ability to quantify
desynchronization risk in Sec. III. We then go on to show that using
machine learning produces improved predictions and quantify the
contribution of different input features in Sec. IV. Next, we demon-
strate that the machine learning models are capable of learning
transfer between different datasets. Finally, we interpret the predic-
tions of one model by showing under which circumstances it tends
to fail and how it outperforms simpler models.

II. METHODS

Our approach is summarized in Fig. 1. Using a coarse-grained
model, we simulate the dynamics of a power grid after the failure
of a single transmission line. We then classify the line according
to the final post-failure state: The grid can either relax to a new
synchronous steady state or lose synchronicity permanently. This
procedure is repeated for all lines in a set of synthetic test grids,
providing the raw data for the development of machine learning
models.

This work aims to predict the dynamic stability of a power sys-
tem based solely on static features, i.e., features that can be derived
from the pre-failure steady state, without making use of any simu-
lation results. This way, our prediction method is computationally
much cheaper than simulations, giving it a decisive advantage in an
application case where real-time risk assessment with limited com-
putational resources prohibits simulating all relevant contingencies.
We make use of feature engineering based on concepts from graph
theory and network science, which will be described in detail in
Sec. III.

A. Simulating the impact of line failures

Models of varying complexity are used for power system stabil-
ity analysis, depending on the scope of the analysis and the stability
mechanism of interest.23,24 Since this work investigates solely the
synchronization behavior on large spatial scales, we focus on the
voltage phase angles and frequencies, neglecting aspects of voltage
stability or control. Furthermore, we focus on coarse spatial scales
and, thus, consider aggregated models.25–29 In this approach, each
node of the network represents a small region or city, labeled by
i ∈ {1, . . . , N}. The dynamics of the local phase angle δi and fre-
quency ωi = δ̇i is then determined by the aggregated swing equation

Jiδ̈i + Diδ̇i = P(in)
i − P(el)

i (t). (1)

Here, Ji and Di denote the inertia and damping constant, respec-

tively; P(in)
i is the effective real power injection at node i; and P(el)

i

is the real power exchanged with the grid. Throughout the paper,

we assume that the power is balanced such that
∑

i P(in)
i = 0. We

neglect transmission losses as Ohmic resistance is typically small in
high-voltage transmission grids. Hence, the real power exchanged
with the grid can be written as

P(el)
i (t) =

N
∑

j=1

Pij(t) =

N
∑

j=1

Kij sin
(

δi − δj

)

, (2)

where Pij is the real power flow on line (i, j). The “coupling strength”
Kij = Kji is determined by the susceptance of the respective trans-
mission line (being zero if no line exists), and the voltage level of
the grid.24 In the context of network science, Eq. (1) is commonly
referred to as the second-order Kuramoto model or Kuramoto
model with inertia.30

In the simulations, we first find a steady state of the equations of
motion (1) for the pre-failure grid. This is used as the initial state for
the following simulations. Then, we select a transmission line (i, j)
and remove it from the grid by setting Kij to zero. We simulate the
dynamics using PowerDynamics.jl31 and assess stability in terms of
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FIG. 1. Summary of the machine learning model developed in this paper. We simulated the dynamics of a power grid after the failure of a single transmission line and
classified the outcome as either stable or critical depending on whether nodal frequencies relaxed to zero. Input features for stability prediction are engineered from the
properties of the grid and the pre-failure steady state using concepts from graph theory and network science. We then trained an explainable machine learning model to
predict the stability outcome.

the final state: A line is classified as stable if all nodal frequencies δ̇i(t)
relax back to zero and critical otherwise. This procedure is repeated
for all lines in the respective grid.

We remark that we assume that the power injections P(in)
i are

fixed and perfectly known, while they may fluctuate in reality. Fast
fluctuations of the power can deteriorate the stability of a power
grid32,33 and, thus, decrease the likeliness to relax back to a state with

vanishing nodal frequencies δ̇i(t). Furthermore, the values of P(in)
i

may slowly drift and, thus, differ from the originally planned dis-
patch. Hence, line loads change, which can affect the vulnerability
of the grid.34

B. Power grid datasets

Training and evaluating machine learning models require a
dataset of sufficient size. Real power grids are usually operated well
within their margin of stability, such that desynchronization events
are rare if potentially catastrophic. Hence, it is impossible to use real
data or models of normal operation dispatch scenarios in our study.
Instead, we resort to synthetic models that are close to actual grid
topologies. In order to create datasets containing sufficient numbers
of critical cases, the grids are designed as to be heavily loaded and
are not necessarily statically n − 1 stable, i.e., static stability is not
guaranteed for all n possible single-line failures.

Eight different datasets were produced; an overview is given in
Table I. All test cases in a dataset either have the British transmis-
sion grid topology (marked GB) or the topologies were generated
synthetically using the random growth model developed in Ref. 35.
In the latter case, parameters were chosen that produce topologies
mimicking properties of the U.S. transmission grid (marked US).
Next, we specify how many nodes in the grid act as effective gen-

erators
(

P(in)
i > 0

)

or effective consumers
(

P(in)
i < 0

)

. Nodes are

then randomly assigned to one of the two classes. The ratio of the
number of generators and consumers NG:NC as well as the value of
∣

∣

∣
P(in)

i

∣

∣

∣
for the consumer nodes are given in Table I for all datasets.

The transmission lines were either all modeled with the same effec-
tive coupling strength Kij, or Kij was set to be inversely proportional
to the line length as derived from node positions. The latter case
treats all transmission lines as conductors of the same electrical con-
ductivity. Obviously, Kij = 0 if two nodes i and j are not connected.
Two datasets additionally contained grids of varying line loadings by
rescaling node powers as shown in Table I. The dataset marked by
US◦ had all dead ends removed by connecting them to the next clos-
est node. Finally, the dataset marked by GBpert was created by adding

randomly drawn perturbations of sum zero to every node power P(in)
i

of a reference grid. In some cases, no steady state could be found for
the pre-failure grid. These cases were discarded. The total numbers
of simulated line failures vary by dataset; see Table I.
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TABLE I. Synthetic grid datasets and their properties: K ij is the line capacity and |PC| is the effective power demand of a consumer node. The generator power |PG| then follows

from the generator–consumer ratio NG:NC since power is balanced. NG +NC is the total number of nodes. Datasets USP and USPB contain grids with |PC| = 1.5, 1.6, 1.7, 1.8,

1.9, and 2.

US US◦ US
P

US
P
B UShet GBhet GB GBpert

Kij L−1
ij L−1

ij L−1
ij 4 L−1

ij L−1
ij L−1

ij L−1
ij

|PC| 2 2 [1.5, 2] [1.5, 2] 0.75 1 1 1
NG:NC 1:1 1:1 1:1 1:1 1:4 1:4 1:1 1:1
NG + NC 50 50 50 50 50 120 120 120
Samples 43 825 26 734 126 508 65 568 21 936 118 400 29 600 73 556

C. Machine learning models

For our predictions, we use tree-based machine learning mod-
els because they provide state-of-the-art performance for many
applications36 as well as a high level of explainability.37 The output
of each model is a number y ∈ [0, 1], which can be interpreted as the
probability of a line failure leading to desynchronization. This num-
ber can be used to derive a classification by a simple thresholding
procedure.

We compare the performance of state-of-the-art gradient
boosted tree (GBT) models36 to the gradient boosted stump model
(stumps) and a simple decision tree (DT) model to find out how
much complexity is needed to maximize performance. Here, a
stump is a tree made up of only a root node and two leaf nodes.
The architecture of the three model types is illustrated in Fig. 2. All
models were subjected to hyperparameter optimization via random
search.

Tree-based models can be made transparent by different XAI
methods. We use SHapley Additive exPlanations (SHAP),37 in par-
ticular, for the quantification of feature importance. The SHAP
value quantifies how strongly a feature influences a given predic-
tion made by a model. Averaging over all predictions then yields the
global feature importance, i.e., how much a given feature contributes
to a model overall. To reduce model complexity and increase inter-
pretability, we try to find an “optimal” model of maximal perfor-
mance and minimal dimensionality. Since evaluating all possible
feature combinations is computationally prohibitive, we perform
recursive feature elimination (RFE) in which the feature with the
smallest feature importance is removed recursively from the model.
Note that RFE does not necessarily lead to the optimal feature
combination due to limitations in importance attribution.38

For each dataset, 80% of the samples are used for training and
the remaining 20% for testing. We used fourfold cross-validation,
i.e., the performance is calculated by averaging over four different
train-test splits. Performance was assessed across multiple metrics,
which generally agreed. For conciseness, in this paper, we, therefore,
limit ourselves to the average precision (AP) as a numerical and the
detection error trade-off curve (DET) plot39 as a graphical perfor-
mance metric. The AP is a well-suited metric for our purposes, as it
quantifies the ability of an algorithm to rank samples by relevance,
i.e., desynchronization risk in our case. In potential applications
cases, machine learning would be combined with detailed numerical
simulations. The output of the machine learning model would then

be used to narrow down the vast amount of possible contingencies
to those that should be investigated further via simulations.

III. METRICS OF LINK IMPORTANCE AND

REDUNDANCY

A key idea of this study is to combine machine learning with
concepts from graph theory and network science, which are used
to engineer features that are interpretable and have a high predic-
tive power, as for instance, measures of redundancy or centrality.
Features are computed from the grid’s topology (adjacency matrix),

FIG. 2. Machine learning methods used in this work. Top row: Decision trees (DT)
divide the feature space into hyperrectangles. For every sample, they predict the
mean value of all training samples that lay in the hyper-rectangle the given sample
is located in. This division of the feature space is done via the tree structure.
Each leaf of the tree corresponds to a hyperrectangle in feature space. Middle
row: The gradient boosted trees (GBT) model is initiated as a constant prediction
and then iteratively adds trees to the model. Every new tree is trained so that
its addition to the model minimizes the model’s loss. Bottom row: We also use a
gradient boosted trees model with a maximal tree depth of two, e.g., each tree
can divide the samples only once, using one feature. A decision tree with only two
leaf notes is also referred to as a stump.
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TABLE II. List of the engineered features used to predict desynchronization. Features

for which no symbol is listed showed bad performance and are omitted in Fig. 4 for

conciseness. All features were used as features in the machine learning models.

Feature name/definition Symbol

Redundant capacity ratio40 rab

Widest path redundant capacity ratio rw
ab

Shortest path redundant capacity ratio rσ
ab

Redundant capacity40 Kred
ab

Widest path redundant capacity Kred,w
ab

Shortest path redundant capacity Kred,σ
ab

Response theory pred. max. load40 lreab

LODF pred. max. load41 lDC
ab

√

r2
ab + (lDC

ab )
240 cab

Max. load at operation point lOP

Load on failing line lab

Flow on failing line |Pab|

Phase cohesion13 Not shown
Post-failure phase cohesion13 ρab

maxi |Pi| −
∑

j Kij bab

maxi |Pi|/
∑

j Kij Not shown

Rerouting resistance distance Xre
ab

Weighted rerouting distance Xσ
ab

Normalized edge current betweenness42 εCB
ab

Pre-failure algebraic connectivity Not shown
Post-failure algebraic connectivity Not shown
Algebraic connectivity loss 1λ2,ab

Rerouting distance dre
ab

Edge betweenness εab

Edge connectivity τ ab

Edge k core Not shown

the electric properties (Pin
i and Kij), and the pre-outage state (phase

angles δi and flows Pij). In the following, we introduce the engi-
neered features; a summary is given in Table II. The definition of
the features lab, rab, and τab is further illustrated in Fig. 3. We note
that some of the features are widely used in network science. Hence,
we introduce them very briefly. Furthermore, we will provide a first
assessment of their predictive power using uni-variate models.

A. Definition of the features

The most simple features describing a failing line (a, b) are the
flow |Pab| and the load lab = |Pab|/Kab in the pre-outage state. Intu-
itively, we expect that the failure of a strongly loaded line will have a
stronger impact than a weakly loaded line.

A variety of measures of connectivity, redundancy, and cen-
trality were introduced in the context of network science. The edge
connectivity τab of a link (a, b) is defined as the number of edge-
independent paths between the nodes a and b and provides an
elementary measure of redundancy.43 If τab = 1, then the removal
of the edge (a, b) will disconnect the grid and almost surely lead to
desynchronization. The algebraic connectivity or Fielder value λ2 is

of particular interest in flow networks.44,45 It is defined as the smallest
non-zero eigenvalue λ2 of the graph Laplacian matrix Y ∈ R

N×N,44

Yij =











−Kij if i is connected to j,
∑

` Ki` if i = j,

0 otherwise.

(3)

We evaluate this eigenvalue before and after the removal of the line
(a, b) (pre- and post-failure grid) and compute the difference 1λ2,ab

as a measure for the loss of connectivity.
The edge betweenness measures the centrality of an edge.43

The original version εab is defined by computing the shortest path
between all pairs of nodes in the network and counting how many
of these paths cross the edge (a, b). Here, we also use the flow-
based version εCB

ab where the shortest paths are replaced by current
flows.46 The coreness of a line has been shown to be related to its
vulnerability.47 The k-core of a graph is its maximal subgraph that
contains only nodes of degree k or more. The coreness of a node
a is defined as the highest k for which a is part of the k-core, and
the coreness of a line is the smaller of the corenesses of its terminal
nodes.

If an edge (a, b) fails, its flow must be rerouted via alternative
paths. The properties of these paths, especially their length, may,
thus, be relevant to determine the impact of the failure. The rerout-
ing distance was introduced in48 to predict flow changes in linear
flow networks resulting from line failures. The rerouting distance
of two lines is defined as the length of the shortest loop that con-
tains both lines. Here, we introduce the rerouting distance of a single
line (a, b) as the shortest loop that contains the line. Up to an offset
of one, this is equivalent to the geodesic distance between a and b
in the post-failure grid. Here, we extend this definition to incorpo-
rate line properties, interpreting K−1

ij as the effective resistance of an
edge (i, j). We then define the weighted rerouting distance Xσ

ab, as the
effective series impedance of the weighted shortest path in the post-
failure grid. We further define the rerouting resistance distance Xre

ab

of a line (a, b) as the resistance distance49 between a and b in the
post-failure grid.

Line outage distribution factors (LODFs) are widely used in
power system stability analysis.50–52 Assuming small-phase angle dif-
ferences between connected nodes, the equations describing the
steady state are linearized, sin(δi − δj) ≈ δi − δj, which allows to
compute the post-failure steady state analytically, implicitly assum-
ing that such a steady state exists.48,53 To the same end, in Ref. 54,
linear response theory was applied to the second-order Kuramoto
model by linearizing the sine around the pre-failure steady state. In
our context, the maximal predicted line loading maxij |Pij|/Kij in the
post-failure grid is of particular importance. A value greater than
one hints at an overload and, thus, a loss of stability. This quantity
is denoted as lDC

ab (computed using LODFs) and lreab (linear response
theory), respectively.

The maximal line loading at the pre-failure operation point,
max(i,j)∈E sin

(

δi − δj

)

, can be used as a proxy for the overall line
loading. We denote it as lOP.

A simple necessary condition for the existence of a steady state

of Eq. (1) is given by |P(in)
i | ≤

∑

j Kij. Hence, we consider the follow-

ing quantities, evaluated after the removal of edge (a, b), as potential
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FIG. 3. Definition of the features lab, rab, and τab. To illustrate the definition, we consider a small example network with three generator nodes (squares) and eight consumer
nodes (circles). The color of the edges indicates the loading, where red corresponds to a high load. (a) The failing line (dashed) has a capacity Kab = 10 and carries a
flow Pab = 6. The load is lab = Pab/Kab = 6/10. (b) If the line (a, b) fails, the power flow has to be rerouted via alternative paths. There is a bottleneck for the rerouting
(dashed black line) with two lines having unused capacity K red

ab = 7. The redundant capacity ratio is rab = Pab/K
red
ab = 6/7. (c) The edge connectivity τab counts the number

of edge-independent paths, i.e., paths that do not share an edge, from a to b. In the example, we have two such paths highlighted in blue and violet.

features

max
i

∣

∣

∣
P(in)

i

∣

∣

∣
−

∑

j

Kij, max
i

∣

∣

∣
P(in)

i

∣

∣

∣
/
∑

j

Kij. (4)

Dörfler et al.13 introduced a synchronization condition for the exis-
tence of a stable steady state with maximal phase difference γ

between any two connected oscillators. Adapted to our problem, the
criteria reads

||Y†
P||ε,∞ ≤ sin(γ ), (5)

where Y† is the pseudoinverse of the graph Laplacian matrix,

P =
(

P(in)
1 , . . . , P(in)

N

)>

, and ||x||ε,∞ = maxi,j∈E |xi − xj|. In the fol-

lowing, we use the left-hand side of the equation as an input feature
and refer to it as the cohesiveness ρ. The respective value in the post-
failure grid, i.e., after removing the edge (a, b) from the Laplacian, is
denoted as ρab.

The redundant capacity Kred
ab of a line (a, b) quantifies its redun-

dancy in the pre-failure steady state of the grid.40 This measure is
inspired by graph theoretical flow problems, in particular, the min-
cut max-flow theorem.55 It is defined as the total additional flow
that the grid can transport from a to b by using all possible paths
that do not include line (a, b) itself. Since Kred

ab will be used to assess
the impact of a line failure, we must take into account that lines
typically carry a flow before the failure. Therefore, we do not ask
how much flow a line (i, j) can carry in total (given by the cou-
pling constant Kij) but how much it can carry in addition to the
pre-failure state. Accordingly, we introduce a residual network Gres

in which lines are described by the residual capacity Kres
ij = Kij − Pij.

Since Kres
ij 6= Kres

ji , we must view Gres as a directed graph, where every

line is represented by two directed edges with different capacities.
The redundant capacity Kred

ab of the line (a, b) is then obtained by
removing the line (a, b) from Gres and then computing the maximum
(a, b)-flow via the Edmonds–Karp algorithm.55 By the virtue of the
min-cut max-flow theorem, the redundant capacity Kred

ab equals the
minimum capacity of all (a − b)-cuts in the Gres and, thus, identifies

the bottlenecks between the nodes a and b. Furthermore, we relate
the redundant capacity to the amount of flow that has to be rerouted,
which is given by the pre-outage flow on the failing line

∣

∣P
pre

ab

∣

∣. The

redundant capacity ratio rab =
∣

∣P
pre

ab

∣

∣ /Kred
ab has high predictive power

for the impact of line failures as previously shown in Ref. 40. The
definition of Kred

ab and rab is further illustrated in Fig. 3. Furthermore,
we consider a combination of the redundant capacity ratio and the

maximum load predicted from LODFs, cab =

√

r2
ab +

(

lDC
ab

)2
.40

The graph theoretical max flow provides an upper bound for
real power flows but not the actual value. Hence, we introduce two

variants of the redundant capacity Kred,σ
ab and Kred,w

ab , which do not
take into account all possible paths but only the shortest path (σ )
path or the widest path (w) from a to b, respectively. Here, the widest
path is defined as the single path with the widest bottleneck, i.e., the
largest value of minij∈path Kres

ij . As before, we additionally define the

corresponding ratios rσ
ab and rw

ab.

B. Initial evaluation of the features

We now provide a first assessment of the predictive power
of the engineered features in terms of simple uni-variate predic-
tion models. For each feature, a model is setup as follows. Given a
threshold h, an edge is predicted as critical if the metric exceeds h
and predicted stable otherwise. By varying the value of h, one can
derive the precision-recall curve and, thus, the AP. Figure 4 shows
the AP scores for the different features and all datasets. Note that for
conciseness, some of the features introduced before that performed
badly are not shown. The features are ordered according to what
information they take into account: from full information (topol-
ogy, electric properties, and pre-failure state), over topological and
electrical properties, to purely topological.

The features showing the best performance are cab, rab, rw
ab, rσ

ab,
lre, and lDC , with cab clearly scoring the highest. Besides being strong
predictors, they are also the most consistent, showing a comparably
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FIG. 4. Performance of uni-variate threshold models for different engineered
features. The performance is quantified by the average precision (AP) score, eval-
uated for the eight datasets summarized in Table I. Black bars indicate the mean
and standard deviation over the datasets. Note that the performance might differ
across different datasets not only because of a feature’s strengths and weak-
nesses but also because a data set can be intrinsically easier or harder to predict.
Features take more information into account from right to left: first purely topolog-
ical features, then including electrical properties, and finally also the pre-failure
steady state. We find that features derived from the redundant capacity and the
predicted maximum line load achieve the highest scores. They are also the most
consistent over all datasets. Purely topological features show bad performance.

low performance variance. The full redundant capacity ratio rab out-
performs the related rw

ab and rσ
ab. The score of lreab and lDC

ab is almost
identical on all metrics and datasets. All of the aforementioned fea-
tures quantify the impact of the line failure on the flows. Notably, the
next best feature, ρab, also falls into this category as it also provides
an estimate for the maximum line loading in the post-failure grid.

The ten best-performing features all take into account the full
state of the grid. The next best features either take into account
electrical and topological information or the pre-failure steady state.
The best-performing purely topological feature is dre

ab, which is out-
performed by no less than 16 other features. Still, it outperforms
more common and complex topological features, including the cur-
rent flow centrality. This is likely due to the fact that rerouting
features are more specific to the problem than centrality measures.

As described above, categorical predictions are derived by set-
ting a threshold h. We find that the optimal threshold is mostly
constant between different datasets for the best-performing fea-
tures. This also hints at a potential for generalization as no further
knowledge about a power grid is needed to gauge whether a fail-
ure might be critical or not. This is not given for other features.
A very low impedance distance, for instance, does not prevent
desynchronizations if the grid is already loaded to the point of
failure.

We conclude that the best-performing features are all based on
network flows—either employing a graph theoretical perspective or
linearizing the steady-state equations.

IV. MACHINE LEARNING CRITICAL LINES

A. Predictability of network desynchronization

We now proceed to the main goal of our study, the combi-
nation of modern machine learning models and network science
methods. The features introduced in Sec. III are used as inputs

FIG. 5. The performance of machine learning models averaged over four
train-test splits. We show the average precision (AP) score of the decision tree
(DT), gradient boosted stumps (stumps), and gradient boosted trees (GBT) mod-
els with cab as a benchmark for all datasets. Black bars indicate the mean and
standard deviation over the datasets. The GBT model consistently outperforms
the other models.

in models using gradient boosted trees (GBT), gradient boosted
stumps (stumps), and a simple decision tree (DT). The feature cab

is excluded here because it is already a combination of the two fea-
tures rab and lDC

ab . Instead, we use a univariate model based on cab as
a benchmark.

Figure 5 shows the performance of the optimal models for all
datasets. We find that all machine learning models outperform the
univariate benchmark cab, i.e., combining features improves the pre-
dictability. The performance increases with model complexity, with
GBT models reaching an average precision of more than 0.996 aver-
aged over all datasets. We conclude that the proposed approach of
integrating capable network features via machine learning is highly
effective in assessing the network’s robustness.

B. Reducing model complexity and identifying key

features

Tree-based machine learning models perform inherent feature
selection, which can be used to identify features with the highest
predictive power. We apply recursive feature elimination to reduce
model complexity and to improve the interpretability of the models.
Figure 6 shows how the average performance over fourfold cross-
validation evolves as features are gradually removed. In all cases,
we find that many features can be discarded without loss of per-
formance. Eliminating a feature does not harm performance if the
feature is not a good predictor or when the feature is redundant with
respect to the remaining features. For stumps and especially deci-
sion trees, we find the optimal number of features to be lower than
for the GBT models. That is, the GBTs can better handle complex
multi-dimensional inputs.

We now investigate the individual features and their role in
machine learning prediction. Figure 7 shows the feature impor-
tances, i.e., how much each feature contributes to the predictions
on average, for the optimal GBT models. Feature importances are
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FIG. 6. Recursive feature elimination decreases model complexity and improves explainability. Left panel: Average precision score of the GBT model during recursive feature
elimination. The vertical line marks the selected “optimal” model. Additional features do, in theory, not harm GBT performance; small differences occur by chance. Right
panel: DET curves for GBT models with different numbers of input features. The optimal and the 27 feature model perform almost identically, confirming the choice of the
optimal model. As evident from the 6-feature and 2-feature model, eliminating more features leads to significant performance loss.

normalized so that they sum to one. Results are mostly consistent
between datasets with higher similarity also showing more similar
feature importance. We find that, in general, feature importances are
closely linked to the single feature performance shown in Fig. 4. That
is, a feature with a high univariate predictive power will typically also
show a high feature importance. The redundant capacity ratio and
predicted line loading features have the highest feature importances.

Purely topological features add very little value and are, thus, barely
used by the models.

We note that two groups of features are based on similar con-
cepts and are, thus, internally highly correlated. The two features
lDC
ab and lreab are both based on a linearization of the power flow
equations and, thus, partly redundant. Hence, models will use them
interchangeably to a certain extent. Similarly, features based on the

FIG. 7. GBT feature importance for all datasets. Results for five different train-test splits are shown, represented by different coloring. In most cases, they strongly overlap,
so differences are barely visible. Due to recursive feature elimination, models have different input features, and no model uses all the features shown. Features not present
in a model are represented by a zero feature importance. Redundant capacity ratio and lDCab and lreab dominate. Importances mostly fit the single-feature performance shown
in Fig. 4. Correlated features compete for importance, so their importance turns out lower than expected from Fig. 4. Notably, ρab has an overall lower importance than |Pab|

even though it shows much better single-feature performance. Purely topological features barely contribute at all.
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TABLE III. To assess the generalizability, models were trained and tested on different

datasets. Every dataset was used as a test set once.

Train US GB US
P
B US GBhet UShet US US◦

Test US◦ US US
P

US
P
B UShet GBhet GB GBpert

full redundant capacity and its shortest and widest path variants are,
to some degree, redundant and interchangeable.

Another outlier in the correlation between single feature per-
formances and feature importance is ρab. Despite being a good
univariate predictor, the GBT models barely rely on it. The post-
failure cohesiveness ρab is a proxy for the maximal line load in the
post-failure steady state. With lDC

ab and lreab, though, two features exist
that provide a similar proxy with substantially better performance.
Hence, models will rather rely on lDC

ab and lreab than on ρab.

C. Generalizability

Until now, all models were trained and tested on different sub-
sets of the same data, i.e., the unknown test samples were drawn
from the same underlying distribution as the training set. We now
go a step further and analyze whether the learning translates between
datasets. The rationale of this is the following: A machine learn-
ing model will only be deployed in a real-world application if it is
expected to show good performance on real-world data, especially
in a high-stakes situation. However, critical contingency events are
rare, so there is not enough real-world data to test, let alone train
a machine learning model on. Therefore, in an application case,
training data will, by necessity, mostly be made up of synthetic test
cases. We now use learning transfer between two different synthetic
datasets as a proxy for learning transfer between synthetic and real
word cases. Furthermore, a successful learning transfer would indi-
cate that the machine learning model is not specific to one dataset or

FIG. 8. AP score of the transfer performance for the decision tree (DT), gradient
boosted stumps (stumps), and gradient boosted trees (GBT) model with cab as
benchmark. While not as good as the original GBTmodel, the GBT transfer model
clearly and consistently outperforms cab.

network topology. This would substantiate the hypothesis that the
model and the most important features describe intrinsic physical
aspects of network stability and not just statistical correlations.

To test the generalizability, datasets were paired so that for
every dataset, a transfer model was chosen, see Table III. Figure 8
shows the performance of the different transfer model types with cab

and the original optimal non-transfer GBT model as benchmarks.
We find that learning transfer is possible in principle, albeit at a
reduced performance. The performance of the GBT and the stumps
transfer model lie between the two non-transfer benchmark mod-
els: higher than the uni-variate model cab and lower than the full
GBT model. In contrast, the decision tree transfer models do not
outperform the cab model.

FIG. 9. Relation between key input features and model outcomes for the US◦ dataset. Left: All samples of the dataset projected into a two-dimensional feature space. Due
to the high single-feature performance of rab and l

re
ab, stable and critical samples are mostly separated in two dimensions. Most misclassified samples are found in the overlap

region. Right: Magnification of the data around the overlap region. The color code shows the probability output of the GBT model. In the overlapping region, the GBT model
shows a significant improvement beyond the best prediction achievable by a two-dimensional model.
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The transfer performance does, of course, depend on the two
datasets. In this study, the choices of respective training sets were
arbitrary and not necessarily optimized to enable easy learning
transfer. Hence, test and training datasets may have differing topolo-
gies, electrical properties, line loads, and different class frequencies.
It, thus, stands to reason that a machine learning model trained
on data from high-quality simulation models would offer much-
improved performance compared to uni-variate models based on
single features such as cab, lreab, or rab.

D. Interpreting the ML models

We complete our study with a more detailed look at the rela-
tion of the key input features to the GBT model output. The left
panel in Fig. 9 is a two-dimensional projection of the US◦ dataset,
showing the two most important features rab and lreab. Those samples
that were correctly classified by the machine learning model are col-
ored according to the outcome, while false predictions are colored
in red. We find that while the two features already separate critical
and stable samples with high accuracy, there is an area of overlap. By
drawing on more features, the optimal GBT model is able to reduce
errors significantly beyond what would be possible using only those
two features (see Fig. 6). Nonetheless, most false predictions of the
GBT model occur in this overlap region.

The right panel in Fig. 9 shows a magnification around the
overlap region, with a color mapping according to the probability
output y of the GBT model. As desired, critical samples generally
have a higher probability output than stable samples. The figure elu-
cidates the additional value of using additional features in the GBT
model instead of relying on just the two best-performing ones. Both
classes overlap in the two-dimensional feature space spanned by rab

and lreab. Still, the GBT model provides accurate predictions for many
samples in this region. The additional features improve the model’s
predictions, even though especially the best performing among them
are very highly correlated to either rab or lreab.

V. CONCLUSION AND OUTLOOK

Power grid system stability is an important and timely topic,
as large-scale outages can have catastrophic impacts. In this paper,
we improved upon known ways of predicting the dynamic stability
of a power grid to line failures by combining classical power system
tools, graph theory-inspired feature engineering, and interpretable
machine learning models. Since the prediction methods applied are
computationally cheap, they should be well suited to real-world
applications.

Using a second-order Kuramoto model, we simulated line fail-
ures for eight classes of synthetic grid models and classified whether
they lead to a desynchronization event or not. We assessed the abil-
ity of 27 different features that quantify, among others, a line’s load,
connectivity, redundancy, or centrality to correctly classify dynamic
stability outcomes. We then used these features as input for dif-
ferent tree-based machine learning models. After reducing model
complexity by performing recursive feature elimination to improve
interoperability, we compared the performance of the different
models. We found that especially gradient tree boosting models
produce very good predictions reaching an average precision (AP)
that exceeds 0.996 when average over all datasets.

The engineered features contribute very differently to the mod-
els. In particular, we identified two classes of features that have a
high predictive power and feature importance. First, a linearization
in the spirit of line outage distribution factors allows us to predict
the maximum flow in the post-failure grid from the pre-failure state.
Second, graph theory provides an upper limit for the ability of a grid
to reroute power flows and, thus, a measure of redundancy for each
line in the grid.

Features that are not specific to flow networks generally per-
formed very badly and had very low feature importance. This is
particularly true for purely topological features including connectiv-
ity, centrality, or coreness. These findings are of particular relevance
for studies of network robustness in network science, which fre-
quently refer to power grids as potential applications cases. Many
classical studies focus on purely topological network properties, see,
e.g., Ref. 56–59. Based on our results, we conclude that purely topo-
logical metrics do not provide good predictors for the vulnerability
of electric power grids, cf. Ref. 60 and 61.

Applications to real-world grids require sufficient training data
that can only be obtained from simulations. Hence, it is essential to
generalize and transfer learned results from one system to another.
To assess generalizability, we tested the machine learning models on
different datasets than they were trained on. The GBT model was
still able to consistently outperform the best single-feature predictor.
We conclude that good performance should be achievable, especially
since training data would be engineered to mimic potential critical
real-world contingencies, while our datasets were created to cover a
wide range of grid properties.

In conclusion, we have demonstrated the potential of integrat-
ing machine learning models and network science metrics to assess
the robustness of networked systems. A natural extension of our
results would be to use larger and more realistic power system mod-
els. Our approach could also be applied to other stability risks, such
as node failures or perturbations, and types, such as voltage stability,
transient overloads, or overload cascades. By training and deploy-
ing different models, transmission grid operators should be able to
greatly improve their ability to identify potential risks in time, thus
allowing early interventions where necessary and ultimately further
improving power grid stability.
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