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Abstract—Accurate forecasts of electricity prices are crucial
for the management of electric power systems and the devel-
opment of smart applications. European electricity prices have
risen substantially and became highly volatile after the Russian
invasion of Ukraine, challenging established forecasting methods.
Here, we present a Long Short-Term Memory (LSTM) model for
the German-Luxembourg day-ahead electricity prices addressing
these challenges. The recurrent structure of the LSTM allows
the model to adapt to trends, while the joint prediction of both
mean and standard deviation enables a probabilistic prediction.
Using a physics-inspired approach — superstatistics — to derive an
explanation for the statistics of prices, we show that the LSTM
model faithfully reproduces both prices and their volatility.

Index Terms—Electricity prices, day-ahead electricity prices,
German-Luxembourg electricity prices, LSTM, probabilistic
forecasting, volatility, superstatistics, heavy tailed distributions

I. INTRODUCTION

Electricity prices in Europe underwent a substantial increase
in the past two years, driven by an energy crisis coupled with
the invasion of Ukraine [2], [3], [4]. The stark dependence of
several European countries on Russian gas and oil, and overall
inefficiencies in transmission and operation of the electricity
markets, have led to a manifold increase of the exchange
market prices [5], [6]. This development has serious economic
consequences for power-intensive industries [7], [8].

Accurate forecasts of electricity prices are crucial for smart
power systems. For example, demand-side management is
improved by accurate forecasting as it allows to anticipate the
optimal scheduling of energy consumption and storage [9],
[10]. However, the increasing uncertainty of electricity prices
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affects many optimization problems and should thus be re-
flected in any forecast [11].

Modeling electricity prices has traditionally been imple-
mented with univariate and multivariate time series analy-
sis [12]. Like many other recent data-centric approaches,
electricity price forecasting has received a boost from machine
learning (ML) approaches [13], [14], [15], [16], [17]. As ML
algorithms do not require any assumptions about economical
mechanisms in advance but intrinsically uncover them, they
can adjust to a changing environment of energy systems
variables to output accurate predictions. Recurrent machine
learning models are particularly suited to adapt to system
changes because of the memory effect encoded in their internal
states. Yet, many machine learning applications focus on
predicting only the average and forego analyzing the volatility
of prices, i.e., they lack an intrinsic uncertainty quantification.

In this work, we present a forecasting model based on Long
Short-Term Memory (LSTM) recurrent neural networks [18],
[19] that predicts both the mean and the standard deviation of
day-ahead electricity prices. The model addresses two major
challenges of price forecasting discussed above: (1) the rapid
and comprehensive changes in the European electricity market
market and (2) the increasing volatility of the prices. The
LSTM makes use of various power-systems data, primarily
load and renewable generation forecasts as well as fuel prices.
Focusing on the day-ahead prices in the German-Luxembourg
(DE-LU) bidding zone, we show that the LSTM produces
accurate forecasts of electricity prices and price volatility.

In addition, we introduce a novel approach to validate the
ability of the model to reproduce the statistics and volatility
of electricity prices. We take inspiration from superstatistics
in order to contrast the statistical properties of electricity price
time series [20], [21] with the LSTM predictions. This physics-
inspired approach links stochastic volatility with physical
principles [22], allowing us to estimate the volatility of prices.



II. BACKGROUND
A. European Electricity Markets

Electricity markets play a critical role in coordinating gen-
eration and demand prior to the actual delivery of electricity.
Since day-ahead markets trade on a short-term basis, they
are most important for coordination and serve as the main
reference for general price development. Market participants
use power balance forecasts to elaborate optimal trading
strategies one day before actual delivery. The forecasts include
demand and renewable generation to name but a few.

On European day-ahead markets, trading is possible until
12:00 of the day prior to delivery. Most European exchanges
are coupled with Single Day-Ahead Coupling (SDAC) to cre-
ate coupled Market Clearing Prices (MCP) for the participating
bidding zones [23]. Taking into account all bids and offers
as well as network constraints between bidding zones, an
algorithm computes the MCP and all implicit cross-border
trades.

Due to the increasing share of weather-dependent renewable
energy sources and their high volatility [24], which have
doubled from 2004 to 2021 to 21.8% of the total European
generation [25], the electricity market is also becoming highly
volatile [26]. Hence, price forecasting is becoming increas-
ingly difficult. However, it also enables smart grid applications
to be profitable when accurate price forecasts are available.

B. Data

For the task of forecasting electricity prices in the day-ahead
market, we only include information that would be available to
any market participant in the day-ahead market. In particular,
we only include features that would be available by the market
closure at 12:00. As prediction target, we use hourly day-ahead
electricity prices for Germany, collected from the ENTSO-
E transparency platform [27]. Notably, Germany shares its
bidding zone with Luxembourg.

As inputs for our prediction model, we collect power system
features from the ENTSO-E transparency platform [27] and
fuel prices from various platforms detailed below. An overview
of all features used is provided in Tab. I. All data has a
1-hour resolution. Power system features include forecasts
of load, wind generation, and solar generation which are
the main factors driving day-ahead electricity prices [17].
The forecast of wind generation is aggregated from on- and
offshore generation.

Electricity prices in one bidding zone are affected by neigh-
boring zones due to the SDAC. To capture these interactions
while keeping the feature set light, we include the residual
load forecast for each neighbouring bidding zone. The residual
load is the difference of the load and the variable renewable
generation. Notably, the data on solar generation in Poland
(PL) is missing prior to 2020-04-10. We modelled this time
series using a simple linear regression with respect to the solar
generation of its neighboring countries. Furthermore, we did
not include Swedish bidding zone 4 (SE4) due to its high
amount of missing data points.

TABLE I
FEATURES AND THEIR RESPECTIVE UNITS. ABBREVIATIONS: DA:
DAY-AHEAD; NUC. AVAIL.: NUCLEAR AVAILABILITY; RES.: RESIDUALT

Feature Unit
DA Load DE-LU MW
DA Solar DE-LU MW
DA Wind DE-LU MW
DA Res. Load AT, BE, CH, CZ MW
DKI1, DK2 , FR, NL, NO2, PL
Nuc. Avail. DE-LU, FR MW
Gas Price EUR/MWh
Qil Price USD/bbl
Coal Price USD/t
CO2 Price EUR/t

Following Ref. [28], we complement the feature set with
the available nuclear capacity. For each hour, the available
capacity is calculated as the installed capacity minus the
planned unavailability of nuclear power plants [29], [30].
We restrict the data to Germany-Luxembourg and France, as
France has by far the largest installed nuclear capacity in
Europe.

In addition to power system features, we include several
fuel prices in the dataset. Notably, fuels are traded on markets
similar to the stock market, enabling continuous trading during
trading hours. To ensure a realistic forecasting approach, we
only take the opening prices for each trading day, shift them
by exactly 24 hours, and consider it the fixed price for the
entire day. Gas prices are taken from [31], [32], oil prices are
taken from [33] and coal prices from [34]. We also include
the price of carbon emission certificates in the dataset. This
data was taken from EEX [35] for the whole time period.

ITII. MODEL

We develop a Long Short-Term Memory (LSTM) model to
forecast the German-Luxembourg electricity prices. LSTMs
are a type of recurrent neural network particularly designed to
handle long sequences of up to 1000 discrete time steps [36],
[18]. Using longer time periods as inputs mitigates the exten-
sive search for suitable lagging features.

From the dataset, we use data with a fixed sequence length
of 96 hours as input and the electricity price of a single hour as
the target. As the output of the networks, we use two values to
create a probabilistic forecast, assuming a normal distribution
with the probability density function
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The first output value is the mean p of the distribution and
the second value is the standard deviation 0. We impose a
lower bound on the standard deviation, o > 0.01, to prevent
the neural network from predicting negative values.

Due to the dynamical changes in the characteristics of mean
and volatility, model performance can decrease after a certain
time. Therefore, we retrain the model from scratch after one

(=34)* (1)
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e

t Countries according to the ISO-3166 code: DE-LU: Germany-
Luxembourg; AT: Austria; CH: Switzerland; CZ: Czechia; DK1 & DK2:
Denmark bidding zones 1 and 2; FR: France; NL: The Netherlands; NO2:
Norway bidding zone 2; PL: Poland.



week, using each week as a test set. Moreover, we disregard
any week in which there are less than 120 hours remaining
after the aforementioned removal of missing data points from
the evaluation process. We use 17000 hours before each test
set as train and validation sets, i.e., approximately two years
of data. To ensure the normalization of the data without look-
ahead bias, we normalize all data sets using the maximum of
each feature in the train set.

The model is optimized using the Adam optimizer [37]
and the Negative Log-Likelihood (NLL) as loss function.
Assuming that the model predicts a normal distribution with
mean p; and standard deviation o;, the NLL is given by
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Additionally, the model is evaluated using two metrics for
point predictions. We use the Mean Absolute Error (MAE) and
the Symmetric Mean Absolute Percentage Error (SMAPE),
given by

NLL(y, (u,0)) =

MAE(y, 9)
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where y is the true value and ¢ is the predicted value.

Limiting hyperparameter search to a reasonable degree,
we use only a coarse grid search for depth, width, and
early stopping to find a well-performing model. Dropout is
a common regularization technique used in neural networks
which randomly removes connections in the networks [38].
We use a constant dropout of 0.2 (20%) on each layer.

More details on the model development and a detailed anal-
ysis of the role of hyperparameters are provided in Ref. [39].

IV. STATISTICAL PROPERTIES OF ELECTRICITY PRICES
AND THEIR VOLATILITY

In order to understand volatility in electricity prices, we
need to first examine their statistical properties. Foremost,
electricity prices exhibit distributions with heavy tails [26].
Moreover, prices are usually correlated processes marked by
occasional extreme events [12]. Following Han er al. [26],
we argue that electricity price statistics exhibit a time-scale
separation. At short time scales of up to 4 days (96 hours), day-
ahead prices are Gaussian distributed (i.e., they are symmetric
and mesokurtic). Therein, at this scale, they obey Eq. (1). This
also educates our choice of a 96-hour window for the LSTM
implementation. At long time scales, much longer than 4 days,
volatility of the prices induces small and large deviations of
the local standard deviation of the process, resulting in a
strong leptokurtic distribution of the prices. We precise the
volatility 5(7) as the inverse local variance of the process
B(1) = 1/20(7)?, wherein we consider volatility in a time
scale 7 ~ 96h. Hence, we can write an explicit form of

the distribution of the day-ahead electricity prices following a
superstatistical principle [20], [21], [40], [26]

p(plp) = /f f —Blr-mqp, )
0

wherein some common choices for the distribution of the
volatility f(S3) are known from literature [20], [21]. Impor-
tantly, for f(8) a Gamma distribution, we obtained a g¢-
Gaussian distribution Gy g, ,(p) of the prices

Gonn0) = Yey(~Bo— 1)), ®
q
with e,(z) = [1 + (1 — ¢)z]'/*~¢ and N, a normalization

constant [26], which play a central role in the analysis of stock
market price distribution [41].

Superstatistical theory allows us to estimate the local volatil-
ity under the aforementioned time-scale separation. This is
described in detail in Refs. [21], [26]. Similarly, the LSTM-
probabilistic approach yields the standard deviation (or vari-
ance) as a function of time. To distinguish them clearly,
we denote the volatility estimated from the superstatistical
approach 3(7) (having a 96-hour resolution) and the volatil-
ity obtained from the LSTM model v(t) (having a 1-hour
resolution). We should note that estimation of superstatistical
models is currently only developed for one varying parameter
(the volatility 3(7) in our case). Thus, as in Ref. [26], we
detrend the prices and predictions using Empirical Mode
Decomposition [42] by removing the first 5 slowest modes
in the data (see Fig. 1, cf. Ref. [26]). We will now investigate
the ability of the LSTM-probabilistic forecast to accurately
reproduce the statistical properties of the German-Luxembourg
day-ahead electricity prices.

V. RESULTS

To establish a comparable model to recent works [13], [16],
we conducted a hyperparameter search for the best model with
respect to the MAE. To reduce overall computation time, we
evaluated only one year of data for the hyperparameter search.
Specifically, we chose 2021 because it includes prices before
and after the start of the European energy crisis. The best
model had a depth of 2, a width of 32, and an early stopping
parameter of 200.

The developed LSTM model is able to forecast day-ahead
electricity prices with state-of-the-art performance. Different
performance metrics have been evaluated for the 4 years we
examined and are summarized in Tab. II. We find that the
model performance is comparable, if not better than in other
recent works. For instance, Tschora et al. report an MAE
of 7.66 EUR/MWh for the test period 2020-2021 [16], and
demonstrate superior performance compared to established
reference models [13]. In comparison, our model yields a
lower MAE of 7.08 EUR/MWh for the same test period. We
note that this performance is reached despite the fact that our
model is not trained to yield the best point forecast, but to
minimize the NLL. Furthermore, we find that the developed
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The day-ahead electricity prices and the LSTM-probabilistic forecast. (a) Prices in February 2021 (4 years in inset), comparing real prices predicted

prices (shaded areas indicate 1 and 2 standard deviations from the mean). (b) Probability density of the prices and the predicted mean (normalized by standard
deviations &), with Gaussian and g-Gaussian fits. (¢) Volatility 3(7), estimated from a physics-driven superstatistical approach, and volatility v(t) = 1/c(t)?
obtained from the LSTM model. (d) Probability density p of volatilities 3(7) and v(¢).

TABLE 11
YEARLY PERFORMANCE OF THE LSTM MODEL. FOR PROBABILISTIC
FORECASTING, THE NEGATIVE LOG-LIKELIHOOD (NLL, EQ. 2) IS USED.
FOR POINT PREDICTION, THE MODEL IS EVALUATED BY THE MEAN
ABSOLUTE ERROR (MAE, EQ. 3A) AND THE SYMMETRIC MEAN
ABSOLUTE PERCENTAGE ERROR (SMAPE, EQ. 3B) OF THE PREDICTED
MEAN PRICE VALUE

| NLL MAE SMAPE
2019 | 294 373 15.12
2020 | 297 3.93 20.71
2021 | 3.83 1032 1541
2022 | 5.01 29.85 1821
all 3.69 1192 17.42

model is able to rapidly adapt to the overall pattern and trend
of the price time series shown in Fig. la. Furthermore, the
predictions closely follow the daily pattern and capture the
price dynamics throughout the week.

Given our interest in ensuring the model can faithfully
reproduce the statistical properties of the price time series, we
examine the probability density of the prices, the volatilities,
and their distributions. In Fig. 1b, we show the probability
density p of the normalized prices and normalized predicted
means, along with the best fits for a Gaussian and a g-Gaussian
distribution. The g-Gaussian distribution, motivated by the su-
perstatistical model presented, agrees well with the distribution
of the prices. Not unexpectedly, Gaussian distributions cannot
capture the long tails of the electricity prices. The superstatis-
tical approach also provides a data-driven method to estimate
the volatility 3(7) of the prices, following Ref. [26]. In Fig. 1¢c
we display a 1-year snippet of the volatility 5(7) and in Fig. 1d
we display the distribution of the volatilities. We similarly
show the LSTM predictions of the volatility v(¢), which have
a 1-hour resolution in contrast with the volatility 5(7) from
superstatistics, which have a 96-hour resolution. Overall, we
obtain a good match between the physical principles ruling the

price dynamics and the LSTM predictions for both the price as
well as the standard deviation. Obtaining accurate forecasts of
both price and standard deviation is crucial for effective uses
in, e.g., cost-minimizing demand-side management, battery
storage systems, and for power-intensive industries.

VI. CONCLUSION

In this work, we tested the application of probabilistic
forecasting using an LSTM model for electricity price fore-
casting. We developed a simple, two-output LSTM model
that predicts the mean and standard deviation of the German-
Luxembourg day-ahead electricity prices. Our interest was
to understand the ability of the LSTM in reproducing key
statistical properties of time series. To juxtapose the LSTM
forecast, we used a superstatistical approach to recover the
statistics and the volatility (which has an inverse relation to
the local standard deviation) of the prices. We show that the
LSTM model faithfully forecasts the prices, but moreover, also
yields an accurate prediction of the local standard deviation.
Contrasted with the superstatistical approach, we observe that
the LSTM can reproduce the correct statistics of the prices,
hence, correctly capturing the dynamics of electricity prices.

Machine learning approaches, such as the one presented
here, can become a crucial element in the energy markets. At
large, country-wide-scale, they can aid in the forecasting of
all relevant power and energy system variables. At smaller,
potentially decentralized, smart- and/or micro-grid applica-
tions, pre-trained neural networks can deal with online data
to produce valuable predictions that guide the operation of a
grid. Machine learning models can be included in smart grid
devices as inexpensive forecasting tools. A careful validation
of the models, including advanced statistical characteristics, is
important to assert quality and reliability of the forecasts [43].
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