001025675 001__ 1025675
001025675 005__ 20240709081935.0
001025675 0247_ $$2doi$$a10.48550/ARXIV.2403.03767
001025675 037__ $$aFZJ-2024-03064
001025675 1001_ $$0P:(DE-HGF)0$$aBrozos, Christoforos$$b0
001025675 245__ $$aPredicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks
001025675 260__ $$barXiv$$c2024
001025675 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1714658653_24819
001025675 3367_ $$2ORCID$$aWORKING_PAPER
001025675 3367_ $$028$$2EndNote$$aElectronic Article
001025675 3367_ $$2DRIVER$$apreprint
001025675 3367_ $$2BibTeX$$aARTICLE
001025675 3367_ $$2DataCite$$aOutput Types/Working Paper
001025675 520__ $$aThe critical micelle concentration (CMC) of surfactant molecules is an essential property for surfactant applications in industry. Recently, classical QSPR and Graph Neural Networks (GNNs), a deep learning technique, have been successfully applied to predict the CMC of surfactants at room temperature. However, these models have not yet considered the temperature dependency of the CMC, which is highly relevant for practical applications. We herein develop a GNN model for temperature-dependent CMC prediction of surfactants. We collect about 1400 data points from public sources for all surfactant classes, i.e., ionic, nonionic, and zwitterionic, at multiple temperatures. We test the predictive quality of the model for following scenarios: i) when CMC data for surfactants are present in the training of the model in at least one different temperature, and ii) CMC data for surfactants are not present in the training, i.e., generalizing to unseen surfactants. In both test scenarios, our model exhibits a high predictive performance of R$^2 \geq $ 0.94 on test data. We also find that the model performance varies by surfactant class. Finally, we evaluate the model for sugar-based surfactants with complex molecular structures, as these represent a more sustainable alternative to synthetic surfactants and are therefore of great interest for future applications in the personal and home care industries.
001025675 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001025675 588__ $$aDataset connected to DataCite
001025675 650_7 $$2Other$$aChemical Physics (physics.chem-ph)
001025675 650_7 $$2Other$$aMachine Learning (cs.LG)
001025675 650_7 $$2Other$$aFOS: Physical sciences
001025675 650_7 $$2Other$$aFOS: Computer and information sciences
001025675 7001_ $$0P:(DE-HGF)0$$aRittig, Jan G.$$b1
001025675 7001_ $$0P:(DE-HGF)0$$aBhattacharya, Sandip$$b2
001025675 7001_ $$0P:(DE-HGF)0$$aAkanny, Elie$$b3
001025675 7001_ $$0P:(DE-HGF)0$$aKohlmann, Christina$$b4
001025675 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b5$$eCorresponding author$$ufzj
001025675 773__ $$a10.48550/ARXIV.2403.03767
001025675 909CO $$ooai:juser.fz-juelich.de:1025675$$pVDB
001025675 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001025675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b0
001025675 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001025675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b2
001025675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b3
001025675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b4
001025675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b5$$kFZJ
001025675 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b5$$kRWTH
001025675 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001025675 9141_ $$y2024
001025675 920__ $$lyes
001025675 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
001025675 980__ $$apreprint
001025675 980__ $$aVDB
001025675 980__ $$aI:(DE-Juel1)IEK-10-20170217
001025675 980__ $$aUNRESTRICTED
001025675 981__ $$aI:(DE-Juel1)ICE-1-20170217