001     1025675
005     20240709081935.0
024 7 _ |a 10.48550/ARXIV.2403.03767
|2 doi
037 _ _ |a FZJ-2024-03064
100 1 _ |a Brozos, Christoforos
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1714658653_24819
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The critical micelle concentration (CMC) of surfactant molecules is an essential property for surfactant applications in industry. Recently, classical QSPR and Graph Neural Networks (GNNs), a deep learning technique, have been successfully applied to predict the CMC of surfactants at room temperature. However, these models have not yet considered the temperature dependency of the CMC, which is highly relevant for practical applications. We herein develop a GNN model for temperature-dependent CMC prediction of surfactants. We collect about 1400 data points from public sources for all surfactant classes, i.e., ionic, nonionic, and zwitterionic, at multiple temperatures. We test the predictive quality of the model for following scenarios: i) when CMC data for surfactants are present in the training of the model in at least one different temperature, and ii) CMC data for surfactants are not present in the training, i.e., generalizing to unseen surfactants. In both test scenarios, our model exhibits a high predictive performance of R$^2 \geq $ 0.94 on test data. We also find that the model performance varies by surfactant class. Finally, we evaluate the model for sugar-based surfactants with complex molecular structures, as these represent a more sustainable alternative to synthetic surfactants and are therefore of great interest for future applications in the personal and home care industries.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Chemical Physics (physics.chem-ph)
|2 Other
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Rittig, Jan G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bhattacharya, Sandip
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Akanny, Elie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kohlmann, Christina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/ARXIV.2403.03767
909 C O |o oai:juser.fz-juelich.de:1025675
|p VDB
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a BASF
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a BASF
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a BASF
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a BASF
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21